Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tam giác ABC có:
M là trung điểm AB (gt)
N là trung điểm AB (gt)
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
Lâu chưa giải hình ^^

a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>BA=BN; MA=MN
=>BM là trung trực của AN
=>BM vuông góc AN
b: Xét ΔMBC có
MN vừa là đường cao, vừa là trung tuyến
nên ΔMBC cân tại M
=>góc ACB=góc MBC=1/2gócABC
=>góc ABC=60 độ; góc ACB=30 độ

a,Tam giác MNP vuông tại M
=> NP22=MN2+MP2( định lí pytago )
=> 102=62+MP2
=> MP2=100-36=64
=> MP=8cm

a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
b: Xét ΔAIH vuông tại I và ΔAKH vuông tại K có
AH chung
\(\widehat{IAH}=\widehat{KAH}\)
Do đó: ΔAIH=ΔAKH
Suy ra: AI=AK
c: Xét ΔABC có
AI/AB=AK/AC
Do đó: IK//BC

a: Xét ΔIQM và ΔINK có
IQ=IN
góc QIM=góc NIK
IM=IK
=>ΔIQM=ΔINK
b: ΔIQM=ΔINK
=>góc IQM=góc INK
=>QM//NK
c: Xét tứ giác MNKQ có
I là trung điểm chung của MK và NQ
góc QMN=90 độ
Do đó: MNKQ là hình chữ nhật
=>MK=QN

A B C N M F E 1 H
Kéo dài MN cắt AC tại F
Ta có: \(\hept{\begin{cases}AB//NF\\AB\perp AC\end{cases}\Rightarrow NF\perp}AC\)
Xét tam giác ACN có:
\(\hept{\begin{cases}NF\perp AC\left(cmt\right)\\AH\perp NC\left(gt\right)\end{cases}}\)
Mà M là giao điểm của NF và AH
\(\Rightarrow M\)là trực tâm của tam giác ACN
\(\Rightarrow EC\perp AN\)( tc )
\(\Rightarrow\widehat{AEC}=90^0\)
\(\Rightarrow\Delta AEC\)vuông tại E
Tam giác thường là tam giác thường, không thể xét theo tam giác vuông được em nhé.