Cho tam giác MNP (MN<MP). Kẻ tia phân giác AD của góc NMP( D thuộc NP). Trên cạn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: kẻ tia phân giác MD của góc NMP

a: Xét ΔMND và ΔMED có

MN=ME

\(\widehat{NMD}=\widehat{EMD}\)

MD chung

Do đó: ΔMND=ΔMED
=>DN=DE

b: Ta có: MN+NF=MF

ME+EP=MP

mà MN=ME và MF=MP

nên NF=EP

Ta có: ΔMND=ΔMED
=>\(\widehat{MND}=\widehat{MED}\)

mà \(\widehat{MND}+\widehat{DNF}=180^0\)(hai góc kề bù)

và \(\widehat{MED}+\widehat{PED}=180^0\)(hai góc kề bù)

nên \(\widehat{DNF}=\widehat{DEP}\)

Xét ΔDNF và ΔDEP có

DN=DE

\(\widehat{DNF}=\widehat{DEP}\)

NF=EP

Do đó: ΔDNF=ΔDEP

c: ΔDNF=ΔDEP

=>\(\widehat{NDF}=\widehat{EDP}\)

=>\(\widehat{NDF}+\widehat{NDE}=180^0\)

=>E,D,F thẳng hàng

13 tháng 3

nứng

28 tháng 6

Có thể vẽ hình tam giác ra được không



7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO

7 giờ trước (9:37)

Phân tích bài toán


  • Đề bài cho:
    • Góc nhọn xOy
    • Điểm A thuộc Ox, điểm B thuộc Oy, OA = OB
    • Điểm C thuộc tia Ax, điểm D thuộc tia By, AC = BD
  • Yêu cầu:
    • Chứng minh AD = BC
    • Chứng minh △EAC = △EBD (với E là giao điểm của AD và BC)
    • Chứng minh OE là phân giác góc xOy


a. Chứng minh AD = BC


Xét △OAD và △OBC, ta có:

  • OA = OB (giả thiết)
  • ∠xOy chung
  • OD = OB + BD
  • OC = OA + AC

Vì OA = OB và AC = BD nên OA + AC = OB + BD, suy ra OC = OD.

Vậy, △OAD = △OBC (c.g.c). Suy ra, AD = BC (hai cạnh tương ứng).



b. Chứng minh △EAC = △EBD


Xét △OAD = △OBC (chứng minh trên), suy ra:

  • ∠OAD = ∠OBC
  • ∠ODA = ∠OCB

Ta có:

  • ∠EAC = 180° - ∠OAD
  • ∠EBD = 180° - ∠OBC

Vì ∠OAD = ∠OBC nên ∠EAC = ∠EBD.

Xét △EAC và △EBD, ta có:

  • ∠EAC = ∠EBD (chứng minh trên)
  • AC = BD (giả thiết)
  • ∠ACE = 180° - ∠OCB
  • ∠BDE = 180° - ∠ODA

Vì ∠OCB = ∠ODA nên ∠ACE = ∠BDE.

Vậy, △EAC = △EBD (g.c.g).



c. Chứng minh OE là phân giác góc xOy


Xét △OAE và △OBE, ta có:

  • OA = OB (giả thiết)
  • OE là cạnh chung

Từ △EAC = △EBD (chứng minh trên), suy ra AE = BE (hai cạnh tương ứng).

Vậy, △OAE = △OBE (c.c.c). Suy ra, ∠AOE = ∠BOE (hai góc tương ứng).

Do đó, OE là tia phân giác của góc xOy.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

30 tháng 8

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.
18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)

 

a: Xét ΔMNK và ΔMEK có

MN=ME

góc NMK=góc EMK

MK chung

=>ΔMNK=ΔMEK

b,c: Xét ΔKNF và ΔKEP có

KN=KE

góc KNF=góc KEP

NF=EP

=>ΔKNF=ΔKEP

=>KF=KP

d: ΔKNF=ΔKEP

=>góc NKF=góc EKP

=>góc EKP+góc PKF=180 độ

=>F,K,E thẳng hàng

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm