K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)

Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là

20-2x(m)

Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:

8-x(m)

Diện tích phần bị thu hồi là:

\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)

b: Diện tích đất bị thu hồi là 455:13=35(m)

=>(x-10)(x-8)=35

=>\(x^2-18x+80-35=0\)

=>\(x^2-18x+45=0\)

=>(x-3)(x-15)=0

=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)

Vậy: x=3

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

10 tháng 8

giúp mình từ câu 9 với


1 tháng 9

Bạn chụp thẳng chút nhé. Mình không nhìn được

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

QT
Quoc Tran Anh Le
Giáo viên
4 tháng 9

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

Câu 5:

AB=1,6+25=26,6(m)

Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)

\(\hat{xAC}=38^0\)

nên \(\hat{ACB}=38^0\)

Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)

=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)

=>Chiếc xe cách chân tòa nhà khoảng 34m