Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)

a) Ta có:\(\frac{19}{33}\) =\(\frac{38}{66}\); \(\frac{16}{11}\)=\(\frac{96}{66}\); \(\frac{13}{22}\)=\(\frac{39}{66}\)
\(\frac{38}{66}\)<\(\frac{39}{66}\)<\(\frac{96}{66}\)hay \(\frac{19}{33}\)<\(\frac{13}{22}\)<\(\frac{16}{11}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là :\(\frac{19}{33}\);\(\frac{13}{22}\);\(\frac{16}{11}\).
b)Ta có: \(\frac{-18}{12}\)=\(\frac{-630}{420}\); \(\frac{-10}{7}\)=\(\frac{-600}{420}\);\(\frac{-8}{5}\)=\(\frac{-672}{420}\)
\(\frac{-672}{420}\)<\(\frac{-630}{420}\)<\(\frac{-600}{420}\)hay \(\frac{-8}{5}\)<\(\frac{-18}{12}\)<\(\frac{-10}{7}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là: \(\frac{-8}{5}\);\(\frac{-18}{12}\);\(\frac{-10}{7}\).
11^96>5^143>2^332=4^166>7^118>3^209>14^87>6^2^7>8^110>12^92>9^104>13^89>10^99