
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc

a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)
\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)
mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)
\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)
b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)
\(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)
Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)
\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)
\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)
\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)

Xét hiệu \(\left(\sqrt{2}+\sqrt{6}\right)-\left(\sqrt{3}+2\right)\)
\(=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)
\(=\sqrt{2}.\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}.\sqrt{2}\)
\(=\sqrt{3}.\left(\sqrt{2}-1\right)-\sqrt{2}.\left(\sqrt{2}-1\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-1\right)>\left(\sqrt{2}-\sqrt{2}\right)\left(\sqrt{1}-1\right)=0\)
Hay \(\sqrt{2}+\sqrt{6}>\sqrt{3}+2\)
Ta có :
\(\sqrt{2}+6\)
\(=\sqrt{2}+2+4\)
\(=\sqrt{2}+2+\sqrt{2}\)
\(=\left(\sqrt{2}\right)^2+2\)(1)
Và \(\sqrt{3}+2\)(2)
Từ (1) và (2)
\(\Rightarrow\sqrt{3}+2< \left(\sqrt{2}\right)^2+2\)
\(\Rightarrow\sqrt{3}+2< \sqrt{2}+6\)
Vậy .............
333⁴⁴⁴ = (333⁴)¹¹¹ = (111⁴.3⁴)¹¹¹
444³³³ = (444³)¹¹¹ = (111³.4³)¹¹¹
Do 4 > 3 nên 111⁴ > 111³ (1)
Lại có:
3⁴ = 81
4³ = 64
Do 81 > 64 nên 3⁴ > 4³ (2)
Từ (1) và (2) ⇒ 111⁴.3⁴ > 111³.4³
⇒ (111⁴.3⁴)¹¹¹ > (111³.4³)¹¹¹
Vậy 333⁴⁴⁴ > 444³³³