Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(x+2y\ne0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:
\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bài 6:
a: ĐKXĐ: x∉{0;2}
Ta có: \(\frac{1}{x}+\frac{2}{x\left(x-2\right)}=\frac{x+2}{x-2}\)
=>\(\frac{x-2}{x\left(x-2\right)}+\frac{2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)
=>\(x-2+2=x\left(x+2\right)\)
=>x(x+2)=x
=>x(x+2)-x=0
=>x(x+2-1)=0
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x+1=0\end{array}\right.\Rightarrow x+1=0\)
=>x=-1(nhận )
b: ĐKXĐ: y∉{0;-5;5}
Ta có: \(\frac{y+5}{y^2-5y}-\frac{y-5}{2y^2+10y}=\frac{y+25}{2y^2-50}\)
=>\(\frac{y+5}{y\left(y-5\right)}-\frac{y-5}{2y\left(y+5\right)}=\frac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
=>\(\frac{2\left(y+5\right)^2}{2y\left(y+5\right)\left(y-5\right)}-\frac{\left(y-5\right)^2}{2y\left(y+5\right)\left(y-5\right)}=\frac{y\left(y+25\right)}{2y\left(y+5\right)\left(y-5\right)}\)
=>\(2\left(y+5\right)^2-\left(y-5\right)^2=y\left(y+25\right)\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>\(y^2+30y+25=y^2+25y\)
=>5y=-25
=>y=-5(loại)
Bài 7:
a: ĐKXĐ: x<>1
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
=>\(\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4}{x^2+x+1}\)
=>\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
=>\(x^2+x+1+2x^2-5=4\left(x-1\right)\)
=>\(3x^2+x-4=4x-4\)
=>\(3x^2-3x=0\)
=>3x(x-1)=0
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\left(nhận\right)\\ x=1\left(loại\right)\end{array}\right.\)
b: ĐKXĐ: x<>2
Ta có: \(\frac{2x^2}{x^3-8}+\frac{x+1}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\left(x^2+2x+4\right)}+\frac{\left(x+1\right)}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\cdot\left(x^2+2x+4\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
=>\(2x^2+\left(x+1\right)\left(x-2\right)=3\left(x^2+2x+4\right)\)
=>\(2x^2+x^2-x-2=3x^2+6x+12\)
=>6x+12=-x-2
=>7x=-14
=>x=-2(nhận)
c: ĐKXĐ: x∉{1;4}
Ta có: \(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)
=>2x+1+5(x-4)=2(x-1)
=>2x+1+5x-20=2x-2
=>7x-19=2x-2
=>5x=17
=>\(x=\frac{17}{5}\) (nhận)

Bài 1:
a: \(\left(x-4\right)^3=\left(x+4\right)\left(x^2-x-16\right)\)
=>\(x^3-12x^2+48x-64=x^3-x^2-16x+4x^2-4x-64\)
=>\(x^3-12x^2+48x-64=x^3+3x^2-20x-64\)
=>\(-15x^2+68x=0\)
=>x(-15x+68)=0
=>\(\left[\begin{array}{l}x=0\\ -15x+68=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{68}{15}\end{array}\right.\)
b: ĐKXĐ: x∉{0;-2}
Ta có: \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)
=>\(\frac{x+2}{x}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x}{x+2}\)
=>\(\frac{\left(x+2\right)^2}{x\left(x+2\right)}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x^2}{x\left(x+2\right)}\)
=>\(x^2+5x+4+x^2=\left(x+2\right)^2=x^2+4x+4\)
=>\(2x^2+5x+4-x^2-4x-4=0\)
=>\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
c: ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
=>\(\frac{\left(x+1\right)}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}-1\)
=>\(\frac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{12-\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>\(\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12-\left(x-2\right)\left(x+2\right)\)
=>\(x^2+3x+2-5x+10=12-\left(x^2-4\right)\)
=>\(x^2-2x+12=12-x^2+4\)
=>\(x^2-2x+12=-x^2+16\)
=>\(2x^2-2x-4=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x-2=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
Bài 2:
Gọi số học sinh giỏi là x(bạn)
(Điều kiện: x∈N*)
Số học sinh khá là \(\frac52x\) (bạn)
Số học sinh giỏi sau khi thêm 10 bạn là x+10(bạn)
Số học sinh khá sau khi bớt đi 6 bạn là \(\frac52x-6\) (bạn)
Số học sinh khá sẽ gấp 2 lần số học sinh giỏi nên ta có:
\(\frac52x-6=2\left(x+10\right)\)
=>2,5x-6=2x+20
=>0,5x=26
=>x=52(nhận)
vậy: Số học sinh giỏi là 52 bạn


Gọi số xe dự định tham gia chở hàng là x (xe) với x>4, x nguyên dương
Mỗi xe dự định chở khối lượng hàng là: \(\dfrac{20}{x}\) (tấn)
Số xe thực tế tham gia chở hàng là: \(x-4\) (xe)
Thực tế mỗi xe phải chở số hàng là: \(\dfrac{20}{x-4}\) (tấn)
Do thực tế mỗi xe phải chở nhiều hơn dự định là 5/6 tấn hàng nên ta có pt:
\(\dfrac{20}{x-4}-\dfrac{20}{x}=\dfrac{5}{6}\)
\(\Rightarrow24x-24\left(x-4\right)=x\left(x-4\right)\)
\(\Leftrightarrow x^2-4x-96=0\)
\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-8\left(loại\right)\end{matrix}\right.\)
Vậy thực tế có \(12-4=8\) xe tham gia vận chuyển

a) ∆AHB vuông tại H
= 4.tan28⁰
≈ 2,1 (cm)
∆AHC vuông tại H
⇒ CH = AH.tanCAH
= 4.tan41⁰
≈ 3,5 (cm)
b) AH = 4 (cm) (chỗ này không biết thầu Đô có nhầm lẫn gì không)
∆AHC vuông tại H
⇒ AC² = HA² + HC² (Pythagore)
= 4² + 3,5²
= 28,25
⇒ AC ≈ 5,3 (cm)