C A D B E

Cho tam giác $ABC$ cân tại...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2024

Tam giác ���ABC cân tại A nên ��=��=12AB=AC=12 cm.

​a) Xét tam giác ���ABC, áp dụng tính chất tia phân giác ta có:

����=����=126=2DBAD=CBAC=612=2

Suy ra ����=23ABAD=32 suy ra ��=23.12=8AD=32.12=8 (cm)

Do đó, ��=12−8=4DB=128=4 (cm).

b) Do ��CE vuông góc với phân giác ��CD nên ��CE là phân giác ngoài tại đỉnh C của tam giác ���ABC.

Vậy ����=����EAEB=ACBC hay ����+��=����EB+BAEB=ACBC

19 tháng 2 2024

Tam giác ���ABC cân tại A nên ��=��=12AB=AC=12 cm.

​a) Xét tam giác ���ABC, áp dụng tính chất tia phân giác ta có:

����=����=126=2DBAD=CBAC=612=2

Suy ra ����=23ABAD=32 suy ra ��=23.12=8AD=32.12=8 (cm)

Do đó, ��=12−8=4DB=128=4 (cm).

b) Do ��CE vuông góc với phân giác ��CD nên ��CE là phân giác ngoài tại đỉnh C của tam giác ���ABC.

Vậy ����=����EAEB=ACBC hay ����+��=����EB+BAEB=ACBC

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

Vì AD là p/g của góc A nên ta có

\(\frac{AB}{AC}=\frac{BD}{DC}=\frac{12}{20}=\frac{28-DC}{DC}\)

DC=17,5

8 tháng 2 2018

A B C D M N E F K I O H

a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB =>  \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)

Lại có:  DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)

Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)

hay \(EF\)//\(BC\)(đpcm)

b) Dễdàng c/m được: Tứ giác AMDN là hình vuông =>  AM=MD=DN=AN

Gọi giao điểm của AE và FM là O

Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)

Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)

Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.

Xét \(\Delta\)AME và \(\Delta\)MDF:

AM=MD

^AME=^MDF         => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)

EM=DF (cmt)

Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900

Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE

Tương tự ta c/m được EN vuông góc với AF 

=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K

Vậy K là trực tâm tam giác AEF (đpcm).

c) Gọi BI giao AD tại H

K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC

hay AK vuông góc với BD

Xét tam giác BAD:

AK vuông góc BD

DM vuông góc AB          => I là trực tâm tam giác BAD

AK cắt DM tại I

=> BI vuông góc AD => IH vuông góc với AD. 

Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H

=> ^HID = 450 => ^BID=1350.

Vậy ^BID=1350.