Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 7 điểm phân biệt là A_1, A_2, A_3, A_4, A_5, A_6, A_7. Tổng số đoạn thẳng được tạo ra là \binom{7}{2} = \frac{7 \times 6}{2} = 21. Xét một điểm bất kì, ví dụ A_1. Có 6 đoạn thẳng nối A_1 với 6 điểm còn lại. Giả sử k đoạn thẳng trong số này được tô màu đỏ. Nếu trong 6-k đoạn thẳng còn lại có 2 đoạn thẳng cùng màu xanh, thì ta có một tam giác cùng màu xanh. Nếu trong k đoạn thẳng được tô màu đỏ có 2 đoạn thẳng cùng màu đỏ, thì ta có một tam giác cùng màu đỏ. Để không có tam giác nào cùng màu, ta cần: \begin{itemize} \item Trong 6 đoạn thẳng nối A_1 với các điểm còn lại, số đoạn thẳng màu đỏ không quá 2 và số đoạn thẳng màu xanh không quá 2. \end{itemize} Tức là k \le 3 và 6-k \le 3, suy ra 3 \le k \le 3, vậy k=3. Xét trường hợp tổng quát. Chọn một điểm, chẳng hạn A_1. Có 6 đoạn thẳng nối A_1 với 6 điểm còn lại. Giả sử có k đoạn thẳng màu đỏ và 6-k đoạn thẳng màu xanh. Nếu k \ge 3, theo nguyên lý Dirichlet, tồn tại ít nhất 3 đoạn thẳng cùng màu đỏ. Nếu trong 3 đoạn thẳng này có 2 đoạn thẳng cùng màu đỏ, ta có tam giác đỏ. Nếu không có 2 đoạn thẳng nào cùng màu đỏ, thì 3 đoạn thẳng còn lại cùng màu xanh, ta có tam giác xanh. Vậy k \le 2. Tương tự, 6-k \le 2, suy ra k \ge 4. Xét đồ thị đầy đủ K_7 có 7 đỉnh. Mỗi cạnh được tô màu đỏ hoặc xanh. Xét một đỉnh v. Có 6 cạnh xuất phát từ v. Theo nguyên lý Dirichlet, có ít nhất 3 cạnh cùng màu, giả sử là màu đỏ. Gọi 3 đỉnh đầu mút của 3 cạnh này là x, y, z. Nếu một trong các cạnh xy, yz, zx màu đỏ, ta có tam giác đỏ. Nếu cả 3 cạnh xy, yz, zx màu xanh, ta có tam giác xanh. Vậy số k nhỏ nhất là 9.

\(\overrightarrow{\forall n\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\forall\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\forall\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\forall\sqrt{\sqrt{\ge\ge\ge x\ge\left\vert\rarr\mathrm{abs}\left(\mathrm{abs}\left(\mathrm{abs}\left(\mathrm{abs}\left(\mathrm{abs}\left(\mathrm{abs}\left(\placeholder{}\right)\right)\right)\right)\right)\right)\right\vert^{\placeholder{}}}}}}}}}}}}}}}}}}}}}}}}}}}\in}\)

Để giải bài toán này, ta cần hiểu rõ các điều kiện:
- Có một hình vuông, tức là 4 đỉnh.
- Có thêm 10 điểm phân biệt bên trong (tổng cộng có 14 điểm: 4 đỉnh + 10 điểm trong).
- Không có 3 điểm nào thẳng hàng.
- Nối các điểm với nhau bằng các đoạn thẳng, sao cho không có hai đoạn nào cắt nhau, chỉ được phép cắt ở đầu mút.
- Hỏi: Số tam giác tối đa có thể tạo thành là bao nhiêu?
🔍 Phân tích:
Bài toán này liên quan đến đồ thị phẳng (planar graph), nơi mà ta nối các điểm lại bằng đoạn thẳng mà không có đoạn nào cắt nhau (trừ tại đầu mút), và đếm số tam giác (số mặt tam giác) có thể tạo ra tối đa.
🎯 Mục tiêu:
Tìm số tam giác tối đa tạo được trong một đồ thị phẳng có 14 điểm (nút) và không có cạnh nào cắt nhau (trừ ở đầu mút).
🔶 Áp dụng công thức Euler cho đồ thị phẳng:
Đồ thị phẳng không có giao điểm (chỉ giao nhau ở đầu mút), thỏa mãn:
\(V - E + F = 2\)
Trong đó:
- \(V\): số đỉnh = 14
- \(E\): số cạnh
- \(F\): số mặt (bao gồm mặt ngoài)
Giả sử tất cả mặt bên trong là tam giác ⇒ mỗi mặt có 3 cạnh. Mỗi cạnh thuộc về 2 mặt ⇒ ta có:
\(3 \left(\right. F - 1 \left.\right) = 2 E\)
(tức là bỏ 1 mặt ngoài, còn lại đều là tam giác)
Kết hợp công thức Euler và đếm cạnh:
\(V - E + F = 2 \Rightarrow 14 - E + F = 2 \Rightarrow F = E - 12\)
Thay vào \(3 \left(\right. F - 1 \left.\right) = 2 E\):
\(3 \left(\right. E - 13 \left.\right) = 2 E \Rightarrow 3 E - 39 = 2 E \Rightarrow E = 39\)
⇒ \(F = 39 - 12 = 27\)
→ Số tam giác tối đa là \(F - 1 = 26\)
✅ Kết luận:
Số tam giác tối đa tạo ra được là:26

a) Giả sử ta có hai đường xiên SA, SB và các hình chiếu HA, HB của chúng trên mp(α)
Giả sử HA = HB
Vì SH ⊥ mp(α) nên SH ⊥ HA và SH ⊥ SB và các tam giác SHA, SHB là các tam giác vuông. Hai tam giác vuông SHA, SHB có canh SH chung và HA = HB nên :
ΔSHA = ΔSHB SA = SB
Ngược lại nếu SA = SB thì ΔSHA = ΔSHB ⇒ HA = HB
Kết quả, ta có HA = HB SA= SB (đpcm)
b) Giả sử có hai đường xiên SA, SC và các hình chiếu HA, HC của chúng trên mp(α) với giả thiết HC > HA.
Trên đoạn HC, lấy điểm B' sao cho HA' = HA ⇒ HC > HA'. Như vậy, theo kết quả câu a) ta có SA' = SA. Ta có trong các tam giác vuông SHB', SHC thì :
SC2= SH2 + HC2
SA2 = SH2 + HA2
Vì HC > HA' nên SC2 > SA2 ⇒ SC > SA
Suy ra SC > SA
Như vậy HC > HA ⇒ SC > SA
Lí luận tương tự, ta có : SC > SA ⇒ HC > HA
Kết quả : HC > HA ⇔ SC > SA
a) Gọi SN là một đường xiên khác. Xét hai tam giác vuông SHM và SHN có SH chung. Nếu SM = SN => tam giác SHM = tam giác SHN => HM = HN, ngược lại nếu HM = HN thì tam giác SHM = tam giác SHNSM => SM = SN.
b) Xét tam giác vuông SHM và SHN có SH chung. Nếu SN > SM thì \(HN^2-SN^2-SH^2\) => \(SM^2-SH^2=HM^2\) => HN > HM. Chứng minh tương tự cho chiều ngược lại.

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E
=> E ∈ DC, mà DC ⊂ (SDC)
=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N
=> N ∈ ME mà ME ⊂ (MAB)
=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)
b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)
=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)
=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO
Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN
Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.

Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)
Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)
a á ớ
đọc thấy rối quá ạ
(em mới lớp 5 ạ)
chúc mn giải đc nha