Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên CE kéo dài lấy F sao cho EF = EO. tg BFAO là hình bình hành do AB, OF cắt nhau tại trung ̣điểm của chúng.
AB / AC = BD / DC (♦) = FO / OC (●) = AH / HC (■) = AH / (BC*cosC)
=> BC*cosC = AC*(AH / AB) = AC*cosA

kẻ đường cao AH ta có \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
AD và AE là hai tia phân giác cả hai góc kề bù => AD _|_ AE
AH là đường cao của tam giác vuông ADE ta có
\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)
vậy \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)

a. Hai tam giác vuông \(AEC,AFB\) có chung góc nhọn đỉnh A nên đồng dạng với nhau. Suy ra \(\frac{AE}{AF}=\frac{AC}{AB}\to\Delta AEF\sim\Delta ABC\left(c.g.c\right)\). Từ đây, sử dụng tính chất tỉ số diện tích bằng bình phương tỉ số đồng dạng, cho ta \(\frac{S_{AEF}}{S_{ABC}}=\left(\frac{AE}{AB}\right)^2=\left(\cos\angle BAC\right)^2.\)
b. Xét hai tam giác \(\Delta KMN,\Delta BHA\) có \(KM\parallel BA,KN\parallel BH,MN\parallel AH\to\Delta KMN\sim\Delta BHA\left(g.g\right)\) (các góc tạo bởi các cạnh tương ứng song song thì bằng nhau). Đặc biệt ta suy ra \(\frac{KM}{KN}=\frac{BH}{BA}\to BH\cdot KM=BA\cdot KN.\)
c. Theo câu b., vì hai tam giác \(\Delta KMN,\Delta BHA\) đồng dạng nên \(\frac{KN}{BH}=\frac{MN}{AH}=\frac{1}{2}\to\) theo định lý Ta-let, đường thẳng KB cắt HN ở điểm G' sao cho \(\frac{G'N}{G'H}=\frac{1}{2}.\) Suy ra G' là trọng tâm tam giác AHC. Mặt khác theo giả thiết G là giao điểm của HN và AM, là hai trung tuyến của tam giác AHC. Suy ra G cũng là trọng tâm tam giác AHC. Vậy G và G' trùng nhau. Đặc biệt ta suy ra \(K,G,B\) thẳng hàng.
Theo tính chất trọng tâm và định lý Ta-let, ta có \(\frac{GA}{GM}=\frac{GB}{GK}=\frac{GH}{GN}=2\to\left(\frac{GA}{GM}\right)^5=\left(\frac{GB}{GK}\right)^5=\left(\frac{GH}{GN}\right)^5=32\)
Do đó theo tính chất tỉ lệ thức: \(\left(\frac{GA}{GM}\right)^5=\left(\frac{GB}{GK}\right)^5=\left(\frac{GA}{GN}\right)^5=32=\frac{GA^5+GB^5+GH^5}{GM^5+GK^5+GN^5}\)
Suy ra \(\sqrt{\frac{GA^5+GB^5+GH^5}{GM^5+GK^5+GN^5}}=\sqrt{32}=4\sqrt{2}.\) (ĐPCM)

đặt DA=DE=EC=AB=a(a>0), tam giác ABD vuông cân tại A suy ra BD=a.căn(2), do đó:DE/DB=a/a.căn(2)=1/căn(2) (1) , DB/DC=a.căn(2)/2a=1/căn(2) (2)
từ (1) và (2) suy ra DE.DB=DB/DC (đpcm)
Tứ giác ESTH có \(\widehat{ETH}=\widehat{ESH}=90^o\) nên ESTH nội tiếp.
\(\Rightarrow\widehat{TSH}=\widehat{TEH}=\widehat{FEH}\)
Mà tứ giác AEHF nội tiếp \(\left(\widehat{AFH}=\widehat{AEH}=90^o\right)\) nên \(\widehat{FEH}=\widehat{FAH}\).
Từ đó suy ra \(\widehat{TSH}=\widehat{FAH}\) \(\Rightarrow\) TS//AB.
Mặt khác, tứ giác FTHK nội tiếp \(\left(\widehat{FTH}=\widehat{FKH}=90^o\right)\) nên \(\widehat{FTK}=\widehat{FHK}\) \(=90^o-\widehat{DFH}\) \(=90^o-\widehat{HBD}\) \(=\widehat{BHD}\) \(=\widehat{AHE}\) \(=\widehat{AFE}\) \(=\widehat{AFT}\) nên TK//AB.
Từ đó suy ra K, T, S thẳng hàng (tiên đề Euclid)
Dễ dàng chứng minh tứ giác HKFT nội tiếp: => \(\widehat{HTK}=\widehat{HFK}\)
Dễ dàng chứng minh tứ giác AFDC nội tiếp: => \(\overline{\widehat{HFK}=\widehat{HAE}}\)
Mà \(\widehat{HAE}=\widehat{HES}\) và \(\widehat{HES}+\widehat{HTS}=180\) (Dễ dàng c/m tứ giác HTSE nội tiếp)
Nên \(\widehat{HTK}+\widehat{HTS}=180\)=> 3 điểm K,T,S thẳng hàng
(Nếu chưa học tứ giác nội tiếp thì kéo dài FK và TH cắt tại điểm nào đó rồi chứng minh tam giác đồng dạng và suy ra góc như trên, tứ giác AFDC cũng vậy )