Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 3 SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Đường elip có phương trình chính tắc là 16x2+9y2=1 có tiêu cự bằng
Phương trình nào sau đây là phương trình chính tắc của đường hypebol?
Tủ lạnh nhà bạn Đô có 20 hộp sữa và 15 cái bánh quy, trong đó có 12 hộp sữa có hương dâu và 8 hộp sữa sô cô la, 8 cái bánh quy hương sô cô la và 7 cái bánh quy hương dâu. Bạn Đô đang cần lựa 1 món bánh sô cô la và 1 hộp sữa dâu để ăn bữa chiều thì Đô có bao nhiêu cách chọn?
Một thùng giấy trong đó có 7 hộp đựng bút màu khác nhau. Số cách chọn hai hộp từ 7 hộp đựng bút trên là
Số nghiệm của phương trình x2−4=x−2 là
Trong mặt phẳng Oxy, cho đường thẳng d:4x+5y−4=0. Vectơ nào sau đây không phải là vectơ pháp tuyến của đường thẳng d?
Trong mặt phẳng Oxy, cho Δ là đường thẳng đi qua điểm A(3;−1) và có vectơ pháp tuyến n=(−2;1). Phương trình tổng quát của đường thẳng Δ là
Trong mặt phẳng Oxy, côsin góc giữa hai đường thẳng d:5x+y−3=0 và d′:−1x+5y=1 bằng
Trong mặt phẳng toạ độ Oxy, cho A(−1;4), B(5;−2). Phương trình đường tròn đường kính AB là
Phương trình nào dưới đây là phương trình tiếp tuyến của đường tròn (C):(x+5)2+(y−1)2=20 tại điểm K(−1;−1)?
Trong mặt phẳng Oxy, hypebol (H) có tiêu cự bằng 8 và giá trị tuyệt đối của hiệu khoảng cách từ mỗi điểm thuộc (H) đến hai tiêu điểm bằng 6. Hypebol (H) có phương trình chính tắc là
Gieo một đồng tiền cân đối và đồng chất hai lần. Xác suất để kết quả của hai lần gieo như nhau là
Cho hai đường thẳng Δ1:2x+y+15=0 và Δ2:x−2y−3=0.
(Nhấp vào dòng để chọn đúng / sai)Δ1,Δ2 cắt nhau tại (−427;−421). |
|
Δ1,Δ2 vuông góc với nhau. |
|
Hai đường thẳng Δ1,Δ2 cắt nhau. |
|
Δ1 có vectơ pháp tuyến n1=(2;1),Δ2 có vectơ pháp tuyến n2=(1;−2). |
|
Trong hệ trục tọa độ Oxy, cho đường tròn (C) tâm I(1;2) và cắt đường thẳng Δ:3x+4y−6=0 tại hai điểm A,B sao cho SIAB=4.
(Nhấp vào dòng để chọn đúng / sai)Khoảng cách từ tâm I đến đường thẳng Δ bằng 1. |
|
Bán kính đường tròn (C) nhỏ hơn 4. |
|
Phương trình đường tròn (C):x2+y2−2x−4y+12=0. |
|
Điểm O nằm trên đường tròn (C). |
|
Trong mặt phẳng toạ độ Oxy, vị trí của một chất điểm K tại thời điểm t (với 0≤t≤180) có toạ độ là (3+2cost∘;4+2sint∘). Biết quỹ đạo chuyển động của chất điểm K là đường tròn tâm I(a;b), bán kính R. Tính a+b+R.
Trả lời:
Một elip với bán trục lớn a và bán tiêu cự c tỉ số e=ac được gọi là tâm sai của elip. Quỹ đạo của trái đất quanh mặt trời là một elip (E) trong đó mặt trời là một trong các tiêu điểm.
Biết khoảng cách nhỏ nhất và lớn nhất giữa mặt trời và trái đất lần lượt là 147 triệu km, 152 triệu km. Tính tâm sai của elip (E). (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Thùng I chứa các quả bóng được đánh số 1;2;3;4. Thùng II chứa các quả bóng được đánh số 1;2;3;4. Lấy ra ngẫu nhiên một quả bóng ở mỗi thùng. Tính xác suất để quả bóng lấy ra ở thùng I được đánh số lớn hơn quả bóng lấy ra ở thùng II. (Làm tròn kết quả đến chữ số hàng phần nghìn)
Trả lời:
Cho hai đường thẳng Δ1 và Δ2 vuông góc với nhau. Một chất điểm chuyển động trong một góc vuông tạo bởi Δ1 và Δ2 có tính chất: ở mọi thời điểm, tích khoảng cách từ mỗi vị trí của chất điểm đến hai đường thẳng Δ1 và Δ2 luôn bằng 4.
Biết rằng chất điểm chuyển động trên một phần của đường hypebol có phương trình dạng mx2−ny2=1. Tính m−n.
Trả lời:
Trong một hộp có 40 cái thẻ được đánh số từ 1 đến 40. Rút ngẫu nhiên đồng thời 3 chiếc thẻ từ hộp.
(Nhấp vào dòng để chọn đúng / sai)Số phần tử của không gian mẫu của phép thử trên là n(Ω)=9880. |
|
Xác suất để rút được 3 chiếc thẻ đều ghi số lẻ bằng 263. |
|
Xác suất để rút được 3 chiếc thẻ trong đó có ít nhất một thẻ ghi số chẵn bằng 135. |
|
Xác suất để tổng ba số trên ba thẻ rút được là số chia hết cho 3 bằng380127. |
|
Bộ bài tú lơ khơ có 52 quân bài, trong đó gồm 13 tứ quý là A; 2; 3; ...; 10; J; Q và K. Rút ngẫu nhiên ra 4 quân bài.
(Nhấp vào dòng để chọn đúng / sai)Xác suất của biến cố A: "Rút ra được tứ quý Át" là 521. |
|
Xác suất của biến cố B: "Rút ra được hai quân Át, hai quân K" là 27072536. |
|
Xác suất của biến cố C: "Rút ra được ít nhất một quân Át" là 5414538916. |
|
Xác suất của biến cố D: "Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau" là 27072582368. |
|
Một người đang chơi cầu lông có khuynh hướng phát cầu với góc 30∘ (so với mặt đất). Tính khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa), biết cầu rời mặt vợt ở độ cao 0,8 m so với mặt đất và vận tốc xuất phát của cầu là 6 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng phẳng đứng và làm tròn kết quả tới hàng phần trăm).
Trả lời: m
Ông A có 800 triệu đồng và ông B có 950 triệu đồng gửi hai ngân hàng khác nhau với lãi suất lần lượt là 7%/năm và 5%/năm. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, ước lượng sau một thời gian thì số tiền của hai ông thu được là bằng nhau và mỗi người khi đó nhận được là bao nhiêu tỉ đồng?
Trả lời: tỉ đồng.