Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào không là mệnh đề?
Mệnh đề phủ định của "Bất phương trình x−2<0 vô nghiệm" là
Cho hai tập hợp A và B được minh họa bằng biểu đồ Ven như hình vẽ:
Khi đó tập hợp C=A∪B là
Điểm A(0;3) không thuộc miền nghiệm của bất phương trình nào sau đây?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây sai?
Trong tam giác ABC có B=75∘, C=45∘, AB=6. Độ dài cạnh BC bằng
Cho tam giác ABC với BC=7 cm, AC=9 cm, AB=4 cm. Giá trị cosA bằng
Cho hai tập hợp A={x∈Z2x2−3x+1=0},B={x∈N3x+2<9}. Khi đó A∩B là
Miền tam giác ABC kể cả ba cạnh (phần tô màu) trong hình vẽ là miền nghiệm của hệ bất phương trình nào trong bốn hệ bất phương trình dưới đây?
Tổng sin22∘+sin24∘+sin26∘+...+sin284∘+sin286∘+sin288∘ bằng
Cho biết sin3α=53. Giá trị của P=3sin23α+5cos23α bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Một cửa hàng bán hai loại thức uống, trong đó 1 ly thức uống loại A có giá 15000 đồng, 1 ly thức uống loại B có giá 20000 đồng. Muốn có lãi theo dự tính thì mỗi ngày cửa hàng phải bán được ít nhất 2 triệu đồng tiền hàng. Gọi x, y lần lượt là số ly thức uống loại A và loại B bán được trong một ngày.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thức uống bán được trong một ngày là 15x+20y nghìn đồng. |
|
b) Muốn có lãi theo dự tính thì 3x+4y≥400 000. |
|
c) Mỗi ngày bán được 78 ly loại A và 42 ly loại B thì cửa hàng đó có lãi như dự tính. |
|
d) Mỗi ngày bán được 83 ly loại A và 37 ly loại B thì cửa hàng đó có lãi như dự tính. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=32 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cos2α=95. |
|
c) cosα=−35. |
|
d) 2sinα+cosαsinα+5cosα=4+57. |
|
Lớp 10A có 21 em thích học Toán, 19 em thích học Văn và có 18 em thích học tiếng Anh. Trong số đó có 9 em thích học cả Toán lẫn Văn, 7 em thích học cả Văn lẫn tiếng Anh, 6 em thích học cả Toán lẫn tiếng Anh và có 4 em thích học cả ba môn Toán, Văn, Anh, không có em nào không thích một trong ba môn học trên. Trong lớp 10A có bao nhiêu học sinh?
Trả lời:
Cho tam giác ABC có A(0;3);B(−1;2);C(2;1). Có bao nhiêu giá trị nguyên của tham số m để điểm M(m;22m−1) nằm bên trong tam giác ABC?
Trả lời:
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
i) Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
ii) Một người mỗi ngày cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B.
iii) Do tác động phối hợp của hai loại vitamin, mỗi ngày số đơn vị vitamin B phải nhiều hơn 21 số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin.
Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng x đơn vị vitamin A và y đơn vị vitamin B thỏa mãn các điều kiện i), ii), iii) thì số tiền phải trả ít nhất. Tính x+y.
Trả lời:
Trên nóc một tòa nhà có một cột ăngten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50∘ và 40∘ so với phương nằm ngang.
Tính chiều cao của tòa nhà. (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị mét)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=nm, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Tìm giá trị lớn nhất của biết thức F(x;y)=x+2y với điều kiện ⎩⎨⎧0≤y≤4x≥0x−y−1≤0x+2y−10≤0.
Trả lời: