Xét hai hình bình hành MNBA và MNCB.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: MNBA là hình bình hành

=>MN//BA và MN=BA

MNCB là hình bình hành

=>MN//BC và MN=BC

MN//BA

MN//BC

mà BA,BC có điểm chung là B

nên A,B,C thẳng hàng

b: Ta có: MN=BA

MN=BC

Do đó: BA=BC

=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)

\(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)

nên \(\hat{NCB}=\hat{NBC}\)

=>NC=NB

mà NC=MB

và NB=MA

nên MB=MA

d: MNDC là hình bình hành

=>MN//CD và MN=CD

MN//CD

MN//CA

mà CD,CA có điểm chung là C

nên D,C,A thẳng hàng

Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)

\(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)

nên \(\hat{NDA}=\hat{NBC}\)

=>\(\hat{NDB}=\hat{NBD}\)

=>ND=NB

mà NB=MA và ND=MC

nên MA=MC

=>ΔMAC cân tại M

Ta có: ΔMAC cân tại M

mà MB là đường trung tuyến

nên MB⊥AC tại B

=>\(\hat{MBA}=90^0\)

a: MNBA là hình bình hành

=>MN//BA và MN=BA

MNCB là hình bình hành

=>MN//BC và MN=BC

MN//BA

MN//BC

mà BA,BC có điểm chung là B

nên A,B,C thẳng hàng

b: Ta có: MN=BA

MN=BC

Do đó: BA=BC

=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)

\(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)

nên \(\hat{NCB}=\hat{NBC}\)

=>NC=NB

mà NC=MB

và NB=MA

nên MB=MA

d: MNDC là hình bình hành

=>MN//CD và MN=CD

MN//CD

MN//CA

mà CD,CA có điểm chung là C

nên D,C,A thẳng hàng

Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)

\(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)

nên \(\hat{NDA}=\hat{NBC}\)

=>\(\hat{NDB}=\hat{NBD}\)

=>ND=NB

mà NB=MA và ND=MC

nên MA=MC

=>ΔMAC cân tại M

Ta có: ΔMAC cân tại M

mà MB là đường trung tuyến

nên MB⊥AC tại B

=>\(\hat{MBA}=90^0\)

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

a: MNBA là hình bình hành

nên MN//BA

MNCB là hình bình hành

=>MN//BC

MN//BA

MN//BC

=>BA//BC

mà BA cắt BC tại B

nên B,A,C thẳng hàng

b: MNBA là hbh

=>MN=BA

MNCB là hình bình hành

=>MN=BC

mà MN=BA

nênBA=BC

mà A,B,C thẳng hàng

nên B là trung điểm của AC

c: Để MNCA là hình thang cân thì MA=NC

mà NC=MB(MNCB là hbh)

nên MA=MB

=>ΔMAB cân tại M

Vậy: Khi ΔMAB có thêm đk MA=MB thì MNCA là hình thang cân

 

4 tháng 8 2023

Mình cảm ơn ạ

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

15 tháng 12 2021

TL:

a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD

Tương tự EG=GN suy ra MNDE là hình bình hành

15 tháng 12 2021

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)