Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: MNBA là hình bình hành
=>MN//BA và MN=BA
MNCB là hình bình hành
=>MN//BC và MN=BC
MN//BA
MN//BC
mà BA,BC có điểm chung là B
nên A,B,C thẳng hàng
b: Ta có: MN=BA
MN=BC
Do đó: BA=BC
=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)
mà \(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NCB}=\hat{NBC}\)
=>NC=NB
mà NC=MB
và NB=MA
nên MB=MA
d: MNDC là hình bình hành
=>MN//CD và MN=CD
MN//CD
MN//CA
mà CD,CA có điểm chung là C
nên D,C,A thẳng hàng
Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)
mà \(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NDA}=\hat{NBC}\)
=>\(\hat{NDB}=\hat{NBD}\)
=>ND=NB
mà NB=MA và ND=MC
nên MA=MC
=>ΔMAC cân tại M
Ta có: ΔMAC cân tại M
mà MB là đường trung tuyến
nên MB⊥AC tại B
=>\(\hat{MBA}=90^0\)

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

a: MNBA là hình bình hành
nên MN//BA
MNCB là hình bình hành
=>MN//BC
MN//BA
MN//BC
=>BA//BC
mà BA cắt BC tại B
nên B,A,C thẳng hàng
b: MNBA là hbh
=>MN=BA
MNCB là hình bình hành
=>MN=BC
mà MN=BA
nênBA=BC
mà A,B,C thẳng hàng
nên B là trung điểm của AC
c: Để MNCA là hình thang cân thì MA=NC
mà NC=MB(MNCB là hbh)
nên MA=MB
=>ΔMAB cân tại M
Vậy: Khi ΔMAB có thêm đk MA=MB thì MNCA là hình thang cân

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )

A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN

a) Ta có :
P là trung điểm AB
Q là trung điểm AC
⇒⇒ PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
⇒⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)
b)Ta có :
Q là trung điểm PE
Q là trung điểm AC
⇒⇒ Q là trung điểm hai đường chéo của tứ giác AECP
Suy ra tứ giác AECP là hình bình hành
a) Ta có :
P là trung điểm AB
Q là trung điểm AC
⇒ PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)
a: MNBA là hình bình hành
=>MN//BA và MN=BA
MNCB là hình bình hành
=>MN//BC và MN=BC
MN//BA
MN//BC
mà BA,BC có điểm chung là B
nên A,B,C thẳng hàng
b: Ta có: MN=BA
MN=BC
Do đó: BA=BC
=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)
mà \(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NCB}=\hat{NBC}\)
=>NC=NB
mà NC=MB
và NB=MA
nên MB=MA
d: MNDC là hình bình hành
=>MN//CD và MN=CD
MN//CD
MN//CA
mà CD,CA có điểm chung là C
nên D,C,A thẳng hàng
Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)
mà \(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NDA}=\hat{NBC}\)
=>\(\hat{NDB}=\hat{NBD}\)
=>ND=NB
mà NB=MA và ND=MC
nên MA=MC
=>ΔMAC cân tại M
Ta có: ΔMAC cân tại M
mà MB là đường trung tuyến
nên MB⊥AC tại B
=>\(\hat{MBA}=90^0\)