
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) \(\left(2x^2+2x+1\right)\left(2x^2-2x-1\right)+\left(2x+1\right)^2\)
\(=4x^4-\left(2x+1\right)^2+\left(2x+1\right)^2\)
\(=4x^4\)
a) \(\left(3x^2+3x+1\right)\left(3x^2-3x+1\right)-\left(3x^2+1\right)^2\)
\(=\left(3x^2+1\right)^2-9x^4-\left(3x^2+1\right)^2\)
\(=-9x^4\)

1/ a/ \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)\left(x^2+2xy+b^2\right)=x^3+2x^2y+x^2y+xy^2+2xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)
b/ \(\left(x-y\right)^3=\left(x-y\right)\left(x-y\right)^2=\left(x-y\right)\left(x^2-2xy+y^2\right)=x^3-2x^2y-x^2y+2xy^2+xy^2-y^3=x^3-3x^2y+3xy^2+y^3\)2/
a/ \(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow x=6\)
Vậy ...
b/ \(\left(x-1\right)^3-x\left(x^2-3x+1\right)=18\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+3x^2-x=18\)
\(\Leftrightarrow2x-1=18\)
\(\Leftrightarrow x=\dfrac{19}{2}\)
Vậy...
3/ a, \(25-x^2=5^2-x^2=\left(5-x\right)\left(5+x\right)\)
b/ \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
c/ \(9x^2+6xy+y^2=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)

a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

⇔ \((\frac{3x}{x+3}+\frac{2}{x-5}):\frac{1}{\left(x-5\right)\left(x+3\right)}\)
ĐK : x \(\ne-3,\) x \(\ne5\)
\(\Leftrightarrow\left[\frac{3x\left(x-5\right)}{\left(x+3\right)\left(x-5\right)}+\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}\right]:\frac{1}{\left(x+3\right)\left(x-5\right)}\)
\(\Leftrightarrow\left[\frac{3x^2-15x+2x+6}{\left(\right)\left(\right)}\right]:\frac{1}{\left(\right)\left(\right)}\)
\(\Leftrightarrow\left[\frac{3x^2-13x+6}{\left(x-5\right)\left(x+3\right)}\right].\left(x+3\right)\left(x-5\right)\)
\(\Leftrightarrow3x^2-13x+6\)

a) \(5x-20\le0\\ \Leftrightarrow5x\le20\\ \Leftrightarrow x\le\frac{20}{5}\\ \Leftrightarrow x\le4\)
b)\(3x+7>-7x+2\\ \Leftrightarrow3x+7x>2-7\\ \Leftrightarrow10x>-5\\ \Leftrightarrow x>-\frac{5}{10}\\ \Leftrightarrow x>-\frac{1}{2}\)
c)\(-9x-5< 4x+21\\ \Leftrightarrow-9x-4x< 21+5\\ \Leftrightarrow-13x< 26\\ \Leftrightarrow x>\frac{-26}{13}\\ \Leftrightarrow x>-2\)
d) 3(2x-5) >8x-13
<=> 6x -15> 8x-13
<=> 6x-8x>-13+15
<=>-2x>2
<=> x< -2/2
<=>x<-1
e) \( 2(3x-5) ≥ 5(2x+6)\\ \Leftrightarrow6x-10\ge10x+30\\ \Leftrightarrow6x-10x\ge30+10\\ \Leftrightarrow-4x\ge40\\ \Leftrightarrow x\le-\frac{40}{4}\\ \Leftrightarrow x\le-10\)
f) \(\frac{2x-3}{4}\le\frac{3x+1}{6}\\ \Leftrightarrow\frac{3.\left(2x-3\right)}{12}\le\frac{2.\left(3x+1\right)}{12}\\ \Leftrightarrow6x-9\le6x+2\\ \Leftrightarrow6x-6x\le2+9\\ \Leftrightarrow0x\le11\)
=>Luôn đúng => Bpt vô số nghiệm
h. Ta có : \(2x+3\left(x-3\right)\ge10x-\left(3x+2\right)\)
=> \(2x+3x-9\ge10x-3x-2\)
=> \(2x+3x-9-10x+3x+2\ge0\)
=> \(-2x-7\ge0\)
=> \(x\ge-\frac{7}{2}\)

\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)

\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)
pt thành nhân tử là ra
bạn có ghi thiếu gì ko
\(x^3+3x^2+3x=0\)
\(x(x^2+3x+3)=0\)
→ \(x=0\)