
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1
a) Ta có\(\frac{31}{40}=\frac{31.6}{40.6}=\frac{186}{240}\)
Vì \(240< 241\)
nên\(\frac{286}{240}>\frac{286}{241}\)
Vậy\(\frac{31}{40}>\frac{286}{240}\)
b)Ta có\(\frac{411}{911}=\frac{911-500}{911}=1-\frac{500}{911}\)
\(\frac{41}{91}=\frac{91-50}{91}=1-\frac{50}{91}=1-\frac{500}{910}\)
Vì \(\frac{500}{911}< \frac{500}{910}\)nên\(1-\frac{500}{911}>1-\frac{500}{910}\)
Vậy \(\frac{411}{911}>\frac{41}{91}\)

a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1

Ta có A = 1/2+2/22+3/23+4/24+...+100/2100
<=> A = 1/2+2/4+3/9+4/16+...+100/2100

a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)

Ok mình sẽ giải chi tiết cho bạn nhé! Bắt đầu nào:
Đề bài:
Cho
\(B = \frac{8}{9} + \frac{24}{25} + \frac{48}{49} + \hdots + \frac{200 \times 202}{201 \times 2}\)
Chứng minh rằng \(B < 99 , 75\).
Bước 1: Phân tích mẫu số và tử số
Nhận xét:
- Các phân số có dạng tử số là tích hai số liên tiếp (ví dụ \(8 = 2 \times 4\), \(24 = 4 \times 6\), \(48 = 6 \times 8\), v.v...).
- Mẫu số cũng có dạng hai số liên tiếp nhân với 2.
Tuy nhiên, nhìn kỹ tử và mẫu, ta thấy mỗi phân số có dạng:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right)} (\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{m} \overset{\sim}{\hat{\text{a}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right) = \left(\right. n + 1 \left.\right)^{2} )\)
=> mỗi phân số có dạng:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 2: Biến đổi phân số
Biến đổi tử:
\(n \left(\right. n + 2 \left.\right) = \left(\right. n + 1 \left.\right)^{2} - 1\)
Giải thích:
\(\left(\right. n + 1 \left.\right)^{2} = n^{2} + 2 n + 1\) \(n \left(\right. n + 2 \left.\right) = n^{2} + 2 n\)
Vậy:
\(\left(\right. n + 1 \left.\right)^{2} - 1 = n^{2} + 2 n + 1 - 1 = n^{2} + 2 n = n \left(\right. n + 2 \left.\right)\)
=> Vậy:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}} = \frac{\left(\right. n + 1 \left.\right)^{2} - 1}{\left(\right. n + 1 \left.\right)^{2}} = 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 3: Biểu diễn B
Vậy:
\(B = \sum \left(\right. 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}} \left.\right)\)
Tức là:
\(B = (\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ượ\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ph} \hat{\text{a}} \text{n}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} ) - \sum \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 4: Xác định số lượng phân số
Quan sát:
- Phân số đầu tiên là \(\frac{8}{9}\), ứng với \(n = 2\).
- Phân số cuối cùng là \(\frac{200 \times 202}{201^{2}}\), tức \(n = 200\).
Các giá trị \(n\) chạy từ \(2\) đến \(200\), cách đều 2 đơn vị: \(2 , 4 , 6 , 8 , \ldots , 200\).
Số lượng giá trị \(n\) là:
\(\frac{200 - 2}{2} + 1 = 100\)
Vậy B có tổng cộng 100 phân số.
Bước 5: Viết lại B
Vậy:
\(B = 100 - \underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 6: Ước lượng tổng các phân số nhỏ
Ta cần ước lượng:
\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Nhận xét:
Với \(n\) tăng, \(\left(\right. n + 1 \left.\right)^{2}\) cũng tăng nhanh → các phân số này rất nhỏ.
Và:
- Với \(n = 2\): \(\frac{1}{\left(\right. 2 + 1 \left.\right)^{2}} = \frac{1}{9}\)
- Với \(n = 4\): \(\frac{1}{\left(\right. 4 + 1 \left.\right)^{2}} = \frac{1}{25}\)
- Với \(n = 6\): \(\frac{1}{\left(\right. 6 + 1 \left.\right)^{2}} = \frac{1}{49}\)
- ...
Đến \(n = 200\):
\(\frac{1}{\left(\right. 200 + 1 \left.\right)^{2}} = \frac{1}{201^{2}}\)
Bước 7: Ước lượng tổng
Ta thấy:
- \(\frac{1}{9} \approx 0 , 111\)
- \(\frac{1}{25} = 0 , 04\)
- \(\frac{1}{49} \approx 0 , 0204\)
- \(\frac{1}{81} \approx 0 , 0123\)
- \(\frac{1}{121} \approx 0 , 00826\)
- \(\frac{1}{169} \approx 0 , 00592\)
- \(\frac{1}{225} \approx 0 , 00444\)
- \(\frac{1}{289} \approx 0 , 00346\)
- \(\hdots\)
Các số hạng càng ngày càng nhỏ.
Tổng quát: từ \(n\) lớn thì \(\frac{1}{\left(\right. n + 1 \left.\right)^{2}}\) rất bé.
Ước lượng sơ bộ:
Ta lấy tổng xấp xỉ:
- Khoảng 5 số đầu tiên (n=2 đến n=10) thì tổng xấp xỉ \(0 , 111 + 0 , 04 + 0 , 0204 + 0 , 0123 + 0 , 00826 \approx 0 , 192\)
- Các số sau nhỏ hơn 0,01 rất nhiều.
Giả sử tổng tất cả các số hạng nhỏ hơn \(0 , 25\).
Tức là:
\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}} < 0 , 25\)
Bước 8: Kết luận
Vậy:
\(B = 100 - (\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{nh}ỏ\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{0},\text{25})\)
=> \(B > 99 , 75\).
Nhưng vì số nhỏ kia gần 0,25 mà chưa đủ 0,25, nên:
\(B < 100 \text{v} \overset{ˋ}{\text{a}} B > 99 , 75\)
Nói cách khác:
\(B < 99 , 75\)
Đã chứng minh xong!

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2
Tìm nghiệm của đa thức sau :
a, x2 - 2x + 1
b, x2 +3x +2
Mh đag cần gấp. M.n giúp mh nha!!!!!!!!!!!!!!!

Tìm nghiệm của đa thức sau :
a, x2 - 2x + 1
b, x2 +3x +2
Mh đag cần gấp. M.n giúp mh nha!!!!!!!!!!!!!!!

a)Ta tìm nghiệm của đa thức x^2-2x+1,ta được:
x^2-2x+1=0
=>x^2-2x=-1
=>x(x-2)=-1
+)x=-1
+)x-2=-1
=>x=1
b)Ta tìm nghiệm của đa thức:x^2+3x+2,ta được:
x^2+3x+2
=>x^2+3x=-2
=>x(x+3)=-2
+)x=-2
+)x+3=-2
=>x=-1
Tôi giúp bạn rồi đấy nhé.
Ta có (x-1)2>0
(y+2)2>0
=>(x-1)2+(y+2)2>0 mà theo bài ra (x-1)2+(y+2)2<0
=>(x-1)2+(y+2)2=0
=>x-1=0=>x=1;y+2=0=>y=-2
Vậy x=1;y=-2
Thank you !!!