\(\sqrt{1+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

Mincopxki: \(P=\sqrt{\left(a^2\right)^2+1^2}+\sqrt{\left(b^2\right)^2+1^2}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

Xét \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

\(a+b=\left(a+1\right)+\left(b+1\right)-2\ge2\sqrt{\left(a+1\right)\left(b+1\right)}-2=2.\frac{3}{2}-2=1\)

Thế số vô nhé.

Đẳng thức xảy ra khi a=b=1/2

11 tháng 7 2018

Mình không hiểu bđt đầu tiên

3 tháng 11 2016

Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)

\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)

Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)

3 tháng 11 2016

\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)

\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)

Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)

\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)

\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)

\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)

Áp dụng Bđt Bunhiacopski ta cũng có:

\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)

Dấu = khi \(x=y=\frac{1}{2}\)

28 tháng 4 2020

Ta có : \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)

\(\Leftrightarrow a+b+ab=\frac{5}{4}\)

Áp dụng BĐT Cô-si, ta có :

\(a^2+b^2\ge2ab\)\(2\left(a^2+\frac{1}{4}\right)\ge2a\)\(2\left(b^2+\frac{1}{4}\right)\ge2b\)

cộng 3 vế theo vế, ta được :

\(3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Áp dụng BĐT Min-cốp-ski,ta có :

\(P=\sqrt{1+a^4}+\sqrt{1+b^4}=\sqrt{1^2+\left(a^2\right)^2}+\sqrt{1^2+\left(b^2\right)^2}\)

\(\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(a^2+b^2\right)^2}\ge\frac{\sqrt{17}}{2}\)

Vậy GTNN của P là \(\frac{\sqrt{17}}{2}\) khi a = b = \(\frac{1}{2}\)

28 tháng 4 2020

Bài gốc của nó đây Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath(ko hiện link thì vô tcn)

Anh Incursion đặt ẩn phụ là nguyên bài này (chuyen Hưng Yên)

13 tháng 9

Mình sẽ trình bày chi tiết lời giải như khi viết vào vở, rõ ràng từng bước nhé:


Bài toán: Cho \(a , b , c \geq 0 , \textrm{ }\textrm{ } a + b + c = 1\). Tìm giá trị nhỏ nhất của

\(P = \frac{1}{a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4}} + \frac{1}{b^{2} + \frac{\left(\right. c - a \left.\right)^{2}}{4}} + \frac{1}{c^{2} + \frac{\left(\right. a - b \left.\right)^{2}}{4}} .\)


Lời giải:

Xét hạng tử thứ nhất:

\(a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4} = \frac{\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2}}{4} .\)

Nhận xét rằng:

\(\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2} \leq \left(\right. a + b + c \left.\right)^{2} = 1^{2} = 1 ,\)

không đúng cho mọi \(a , b , c\). → Ta thử cách khác.


Cách 1: Thử giá trị đặc biệt

  • Với \(a = b = c = \frac{1}{3}\):

\(P = \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} = 3 \cdot 9 = 27.\)

  • Với \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\):

\(P = \frac{1}{1^{2}} + \frac{1}{0^{2} + \left(\right. 0 - 1 \left.\right)^{2} / 4} + \frac{1}{0^{2} + \left(\right. 1 - 0 \left.\right)^{2} / 4} = 1 + 4 + 4 = 9.\)

Tương tự với \(\left(\right. 0 , 1 , 0 \left.\right)\) hoặc \(\left(\right. 0 , 0 , 1 \left.\right)\), đều có \(P = 9\).


Cách 2: Biện luận

Do \(a + b + c = 1\), giả sử \(a = 1 , b = c = 0\) thì \(P = 9\).
Nếu ba số dương và bằng nhau, \(P = 27 > 9\).
Dễ thấy khi các số phân bố đều, mẫu số nhỏ → giá trị lớn; còn khi dồn hết vào một biến, mẫu số lớn → giá trị nhỏ.

Suy ra giá trị nhỏ nhất của \(P\) đạt tại biên, khi một biến bằng 1, hai biến còn lại bằng 0.


Kết luận:

Pmin​=9​

dấu bằng xảy ra khi \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\) hoặc hoán vị.
xin cái tickkkk=)


7 tháng 2 2018

surf gg nhé bjn

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

20 tháng 10 2021

Ta có: \(4=\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\)

\(\le\frac{a+b}{2}+\frac{a+1}{2}+\frac{b+1}{2}+1\Rightarrow a+b\ge2\)

Do đó \(P=\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\ge2\)

Dấu bằng xảy ra khi a = b = 1

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3