Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM
cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o
Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn
b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron
=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)
tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)
mà góc AOM=1/2AOB=AIM=1/2AIB
=> BIM=1/2AIB (đpcm

1: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB và MO là phân giác của góc AMB
Ta có: MA=MB
=>M nằm trên đường trung trực của AB (2)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(1)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM⊥AB tại H và H là trung điểm của AB
Xét (O) có
\(\hat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
\(\hat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\hat{MAC}=\hat{ADC}\)
Xét ΔMAC và ΔMDA có
\(\hat{MAC}=\hat{MDA}\)
góc AMC chung
Do đó: ΔMAC~ΔMDA
=>\(\frac{MA}{MD}=\frac{MC}{MA}\)
=>\(MA^2=MD\cdot MC\left(3\right)\)
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(4\right)\)
Từ (3),(4) suy ra \(MD\cdot MC=MH\cdot MO\)
=>\(\frac{MD}{MO}=\frac{MH}{MC}\)
=>\(\frac{MD}{MH}=\frac{MO}{MC}\)
Xét ΔMDO và ΔMHC có
\(\frac{MD}{MH}=\frac{MO}{MC}\)
góc DMO chung
Do đó: ΔMDO~ΔMHC
=>\(\hat{MDO}=\hat{MHC}\)
mà \(\hat{MHC}+\hat{OHC}=180^0\) (hai góc kề bù)
nên \(\hat{OHC}+\hat{ODC}=180^0\)
=>OHCD là tứ giác nội tiếp
=>\(\hat{DHO}=\hat{DCO}\)
mà \(\hat{DCO}=\hat{ODC}\) (ΔOCD cân tại O)
và \(\hat{ODC}=\hat{MHC}\)
nên \(\hat{MHC}=\hat{OHD}\)
=>\(90^0-\hat{MHC}=90^0-\hat{OHD}\)
=>\(\hat{CHA}=\hat{DHA}\)
=>HA là phân giác của góc DHC
mà HA⊥HM
nên HM là phân giác ngoài tại đỉnh H của ΔDHC
Xét ΔDHC có HM là phân giác ngoài tại đỉnh H
nên \(\frac{MC}{MD}=\frac{HC}{HD}\)
2: Ta có: \(\hat{HAP}+\hat{OPA}=90^0\) (ΔAHP vuông tại H)
\(\hat{MAP}+\hat{OAP}=\hat{OAM}=90^0\)
mà \(\hat{OAP}=\hat{OPA}\) (ΔOAP cân tại O)
nên \(\hat{HAP}=\hat{MAP}\)
=>AP là phân giác của góc HAM
Xét ΔBAM có
AP,MH là các đường phân giác
AP cắt MH tại P
Do đó: P là tâm đường tròn nội tiếp ΔMAB
a) Xét ΔMCA và ΔMAD có:
∠M chung
∠NAC=∠MDA
-> ΔMCA ∞ ΔMAD (g.g)
->\(\dfrac{MC}{MA}=\dfrac{MA}{MD}\)
_>MC.MD=MA2
b) Xét △MOA vuông tại ∠A
MA.MO=MA2(hệ thức lượng)
mà MC.MD=MA2(cmt)
-> MC.MD=MH.MO