
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
\(0\le x\le y\le z\le1\Leftrightarrow\left(1-x\right)\left(1-y\right)\ge0\)
\(\Rightarrow1-y-x+xy\ge0\Leftrightarrow1+xy\ge x+y\)(1)
Tiếp tục chứng minh:
\(\hept{\begin{cases}0\le x\le y\Leftrightarrow xy\ge0\\1\ge z\end{cases}}\) (2)
Cộng theo vế của (1) và (2) ta có:\(2\left(xy+1\right)\ge x+y+z\)
trở lại bài toán: \(\frac{z}{xy+1}=\frac{2z}{2\left(xy+1\right)}\le\frac{2z}{x+y+z}\)
CHứng minh tương tự: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\end{cases}}\)
Cộng theo vế ta có đpcm
Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\)
\(\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)
Chứng minh tương tự ta được \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{z+x}\left(3\right)\end{cases}}\)
Cộng từng vế của (1)(2)(3) ta có:
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)
Mà \(\frac{x}{y+z}\le\frac{x+x}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)
Chứng minh tương tự được \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}=2\left(5\right)\)
(4)(5) => đpcm

Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó
chúc học tốt !

ta có x(x + 2) = 0
=> x = 0
x + 2 = 0
=> x = 0
x = -2
Vậy x = 0 hoặc x = -2
Ta có : (x + 1)(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

a: \(\Leftrightarrow\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =\dfrac{-13}{5}:\dfrac{7}{5}\)
=>10<=x<=-13/7
hay \(x\in\varnothing\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =\dfrac{-2}{3}\cdot\dfrac{-11}{12}\)
=>-13/9<=x<=22/36
hay \(x\in\left\{-1;0\right\}\)
7 số đó là 2,3,5,7,11,13,17
có 7 số nhé! Đúng nhớ k!