Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S_{ABC}=S_{ABN}\)
mà N nằm trên đường thẳng BC
nên NB=BC
=>B là trung điểm của NC
=>\(\begin{cases}x_{N}+x_{C}=2\cdot x_{B}\\ y_{N}+y_{C}=2\cdot y_{B}\end{cases}\Longrightarrow\begin{cases}x_{N}=2\cdot2-\left(-1\right)=5\\ y_{N}=2\cdot1-\left(-2\right)=2+2=4\end{cases}\)
=>N(5;4)
=>Không có đáp án nào đúng

a: Thay y=2 vào (P), ta được: \(x^2=2\)
\(\Leftrightarrow x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx+2m-3=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8\)
\(=\left(2m-2\right)^2+8>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

vecto AB=(-7;0)
vecto DC=(3-x;5-y)
Vì ABCD là hình bình hành
nên vecto AB=vecto DC
=>3-x=-7; 5-y=0
=>x=10; y=5

Câu 2:
\(\overrightarrow{BK}=\left(x-5;6\right)\)
\(\overrightarrow{KA}=\left(3-x;-3\right)\)
\(KA=\sqrt{\left(3-x\right)^2+\left(-1-y\right)^2}=\sqrt{\left(x-3\right)^2+9}\)
\(AC=\sqrt{\left(6-3\right)^2+\left(1+1\right)^2}=\sqrt{13}\)
\(\overrightarrow{BK}\cdot\overrightarrow{KA}=KA^2+AC^2\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(3-x\right)+6\cdot\left(-3\right)=\left(x-3\right)^2+9-13\)
=>x^2-6x+9-4=3x-x^2-15+5x-18
=>x^2-6x+5=-x^2+8x-23
=>2x^2-13x+28=0
hay \(x\in\varnothing\)
C