Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)

7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

1.
2. x^2 + 3 = 5y
Hình học hình học:
- Tính chất
Mã mở
hình thức thay thế:
Giải pháp thực sự:
Mã mở
Dung dịch:
- Giải pháp từng bước
Mã mở
Dẫn xuất tiềm ẩn:
- Hơn

a: x-2y=3
=>2y=x-3
=>\(y=\frac{x-3}{2}\)
Vậy: \(\begin{cases}x\in R\\ y=\frac{x-3}{2}\end{cases}\)
b: 5x(2x-3)=0
=>x(2x-3)=0
=>\(\left[\begin{array}{l}x=0\\ 2x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac32\end{array}\right.\)
c: \(\frac{2}{x}=1\) (ĐKXĐ: x<>0)
=>\(x=\frac22=1\) (nhận)
d: 2x+1>0
=>2x>-1
=>\(x>-\frac12\)

a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:
- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.
- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.
- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.
- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.
- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.
Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.
b) Với phương trình 3x + 5y = -3:
- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.
- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.
- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.
- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.
- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.
Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.
a) Thay từng cặp số đã cho vào phương trình 5x + 4y = 8, ta được:
- 5(-2) + 4 . 1 = -10 + 4 = -6 ≠ 8 nên cặp số (-2; 1) không là nghiệm của phương trình.
- 5 . 0 + 4 . 2 = 8 nên cặp số (0; 2) là nghiệm của phương trình.
- 5 . (-1) + 4 . 0 = -5 ≠ 8 nên (-1; 0) không là nghiệm của phương trình.
- 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không là nghiệm của phương trình.
- 5 . 4 + 4 . (-3) = 20 -12 = 8 nên (4; -3) là nghiệm của phương trình.
Vậy có hai cặp số (0; 2) và (4; 3) là nghiệm của phương trình 5x + 4y = 8.
b) Với phương trình 3x + 5y = -3:
- 3 . (-2) + 5 . 1 = -6 + 5 = -1 ≠ -3 nên (-2; 1) không là nghiệm của phương trình.
- 3 . 0 + 5 . 2 = 10 ≠ -3 nên (0; 2) không là nghiệm.
- 3 . (-1) + 5 . 0 = -3 nên (-1; 0) là nghiệm.
- 3 . 1,5 + 5 . 3 = 4,5 + 15 = 19,5 ≠ -3 nên (1,5; 3) không là nghiệm.
- 3 . 4 + 5 . (-3) = 12 - 15 = -3 nên (4; -3) là nghiệm.
Vậy có hai cặp số (-1; 0) và (4; -3) là nghiệm của phương trình 3x + 5y = -3.
Xét cặp (-2; 1). Thay x = -2 ; y = 1 vào phương trình 5x + 4y = 8 ta được :
5x + 4y = 5.(-2) + 4.1 = -10 + 4 = -6 ≠ 8
⇒ cặp số (-2; 1) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp(0; 2). Thay x = 0 ; y = 2 vào phương trình 5x + 4y = 8 ta được
5x + 4y = 5.0 + 4.2 = 8
⇒ cặp số (0; 2) là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (-1; 0). Thay x = -1 ; y = 0 vào phương trình 5x - 4y = 8 ta được:
5x + 4y = 5.(-1) + 4.0 = -5 ≠ 8
⇒ cặp số (-1; 0) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (1,5 ; 3). Thay x = 1,5 ; y = 3 vào phương trình 5x + 4y = 8 ta được
5x + 4y = 5.1,5 + 4.3 = 7,5 + 12 = 19,5 ≠ 8
⇒ (1,5; 3) không là nghiệm của phương trình 5x + 4y = 8.
Xét cặp (4;-3).Thay x = 4 ; y = -3 vào phương tình 5x + 4y = 8 ta được:
5x + 4y = 5.4 + 4.(-3) = 20 – 12 = 8
⇒ (4; -3) là nghiệm của phương trình 5x + 4y = 8.
Vậy có hai cặp số (0; 2) và (4; -3) là nghiệm của phương trình 5x + 4y = 8.