
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân

Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O
Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O
Khi đó:\(\hept{\begin{cases}AC_1=AC\\BD_1=BD\\C_1D_1=CD\end{cases}}\)
Áp dụng định lí ta có:
Tứ giác \(ABC_1D_1:AD_1\perp BC_1\)
\(\Leftrightarrow AB^2+C_1D_1^2=AC_1^2+BD_1^2\)
\(\Rightarrow AD\perp BC\)
\(\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)
Cre:h

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

a) Các góc của hình thang đều bằng \(90^{\circ}\).
b) Khi \(B C = 6\), chu vi hình thang bằng 24 cm.
a: ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
mà \(\hat{ADC}=2\cdot\hat{BDC}\) (DB là phân giác của góc ADC)
nên \(\hat{BCD}=2\cdot\hat{BDC}\)
Xét ΔBDC vuông tại B có \(\hat{BDC}+\hat{BCD}=90^0\)
=>\(2\cdot\hat{BDC}+\hat{BDC}=90^0\)
=>\(3\cdot\hat{BDC}=90^0\)
=>\(\hat{BDC}=\frac{90^0}{3}=30^0\)
\(\hat{ADC}=2\cdot\hat{BDC}=2\cdot30^0=60^0\)
ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
=>\(\hat{BCD}=60^0\)
AB//CD
=>\(\hat{BAD}+\hat{ADC}=180^0\)
=>\(\hat{BAD}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{ABC}=120^0\)
b: Ta có: AB//CD
=>\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong)
mà \(\hat{ADB}=\hat{BDC}\)
nên \(\hat{ABD}=\hat{ADB}\)
=>AB=AD
mà AD=BC(ABCD là hình thang cân)
nên AB=AD=BC=6(cm)
Xét ΔBCD vuông tại B có \(\sin CDB=\frac{CB}{CD}\)
=>\(\frac{6}{CD}=\sin30=\frac12\)
=>\(CD=2\cdot6=12\left(\operatorname{cm}\right)\)
Chu vi hình thang ABCD là:
AB+BC+CD+DA
=6+6+6+12=18+12=30(cm)

\(4^{a.b.c.d}=\left(4^a\right)^{bcd}=5^{bcd}=\left(5^b\right)^{cd}=6^{cd}=\left(6^c\right)^d=7^d=8\)
=> \(2^{2abcd}=8=2^3\Rightarrow2abcd=3\Rightarrow abcd=\frac{3}{2}\)
\(TDB:\)
\(4^a=8\Leftrightarrow a=1,5\)
\(5,5^b=8\Rightarrow b=1,219\)
\(6,6^c=8\Rightarrow c=1,101\)
\(7,7^d=8\Rightarrow d=1,018\)
\(\Rightarrow a.b.c.d=1,5\times1,219\times1,101\times1,018=2,049\)

A B C D O K a)Xét tứ giác OBKC, ta có:
OC//BK(BK//AC)
BO//KC(KC//BD)
=>tứ giác OBKC là hình bình hành
lại có:
AC \(\perp\) BD ( hai đường chéo)
BD//KC
=> \(\)góc OCK =90o
=> hình bình hành OBKC là hình chữ nhật
b)Ta có:
BC = OK ( do OCKD là hình chữ nhật)
AB=BC( cách cạnh hình thoi bằng nhau)
=> AB = OK
c)
* nếu tứ giác ABCD là hình vuông:
=>BD=AC
mà: BO=1/2BD
OC=1/2AC
=> BO = OC
=> hình chữ nhật OBKC là hình vuông.
Vậy HCN OBKC là hình vuông khi hình thoi ABCD là hình vuông
Số các đường chéo của đa giác lồi 5 cạnh bằng
n ( n − 3 ) 2 = 5 ( 5 − 3 ) 2 = 5
Đáp án cần chọn là: C