
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(M:N=\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Ta có tử số bằng: 2008+2007/2+2006/3+2005/4+…..+2/2007+1/2008
(Phân tích 2008 thành 2008 con số 1 rồi đưa vào các nhóm)
= (1 + 2007/2) + (1 + 2006/3) + (1 + 2005/4) +... + (1 + 2/2007) + ( 1 + 1/2008) + (1)
= 2009/2 + 2009/3 + 2009//4 + ……. + 2009/2007 + 2009/2008 + 2009/2009
= 2009 x (1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009)
Mẫu số: 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009
\(\Rightarrow M:N=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)

A=2008+2007/2+2006/3+2005/4+...+2/2007+1/2008
1/2+1/3+1/4+1/5+...+1/2007+1/2008
=(1+2007/2)+(1+2006/3)+(1+2005/4)+...+(1+2/2007)+(1+1/2008)
1/2+1/3+1/4+...+1/2008
=2009(1/2+1/3+1/4+...+1/2008)
1/2+1/3+1/4+..+1/2008
=2009

P/s : Lớp 6 nhé bạn
Dấu \(.\)là dấu nhân
Đặt \(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}\)
Ta có :
\(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow A=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)
\(\Rightarrow A=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(\Rightarrow A=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(\Rightarrow A=2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow A=2009.B\)
Nên : \(\frac{A}{B}=\frac{2009.B}{B}=2009\)
Vậy kết quả biểu thức đã cho là \(2009\)
~ Ủng hộ nhé
\(\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=2009\)

Xét tử ta có:
\(2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{1}{2008}\)
= \(1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)\)
= \(\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
= \(2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)
=> A = \(\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)
=> A = 2009
A=\(\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...........+\left(1+\frac{2}{2008}\right)+\left(1+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2008}+\frac{1}{2009}}\)=\(\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+....+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=\(\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=2009
Vay A=2009

\(B=2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...+1+\frac{1}{2008}\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
Suy ra \(A=2009\).

2008 + 2007/2 + 2006/3 + 2005/4 + ... + 2/2007 + 1/2008
2009-1/1 + 2009-2/2 + 2009-3/3 + 2009-4/4 + ... + 2009-2007/2007 + 2009-2008/2008
2009 - 1 + 2009/2 - 1 + 2009/3 - 1 + 2009/4 - 1 + ... + 2009/2007 - 1 + 2009/2008 - 1
2009 + 2009.(1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 ) - ( 1 + 1 + 1 + 1 + ... + 1 + 1 )
2009 + 2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 ) - 2008
1 + 2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 )
2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009 )
=> giá trị của biểu thức trên là 2009
https://olm.vn/hoi-dap/detail/10979537019.html