
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\frac{99}{202}\)
\(=\frac{66}{101}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(\frac{4}{3}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(\frac{4}{3}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\)
\(A=\left(\frac{1}{2}-\frac{1}{101}\right).\frac{3}{4}\)
\(A=\frac{99}{202}.\frac{3}{4}=\frac{297}{808}\)

#)Giải :
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{99}{202}\)
\(\Leftrightarrow A=\frac{33}{202}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)

\(S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)
\(S=\frac{1}{2}-\frac{1}{101}\)
\(S=\frac{99}{202}\)

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{65.68}\)
\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\right)\)
\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{65}-\frac{1}{68}\right)\)
\(A=\frac{4}{3}.\left[\frac{1}{2}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{65}-\frac{1}{65}\right)-\frac{1}{68}\right]\)
\(A=\frac{4}{3}.\left[\frac{1}{2}-\frac{1}{68}\right]\)
\(A=\frac{4}{3}.\frac{33}{68}\)
\(A=\frac{11}{17}\)
~ Hok tốt ~
\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)
\(=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)
\(=\frac{4}{3}\times\frac{33}{68}=\frac{11}{17}\)

\(\frac{5}{2.5}+\frac{5}{5.8}+......+\frac{5}{98.101}\)
\(=\frac{5}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+........+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)=\frac{5}{3}.\frac{99}{202}\)
\(=\frac{5.33}{202}=\frac{165}{202}\)

\(\frac{4}{2\cdot5}\)+\(\frac{4}{5\cdot8}\)+\(\frac{4}{8\cdot11}\)+.......+\(\frac{4}{8\cdot83}\)=\(\frac{4}{3}\) (\(\frac{3}{2\cdot5}\)+\(\frac{3}{5\cdot8}\) +......+\(\frac{3}{80\cdot83}\) )
=\(\frac{4}{3}\) (\(\frac{1}{2}\) -\(\frac{1}{5}\) +\(\frac{1}{5}\) -\(\frac{1}{8}\) +..........+\(\frac{1}{80}\) -\(\frac{1}{83}\) )
=\(\frac{4}{3}\) (\(\frac{1}{2}\) -\(\frac{1}{83}\) )
=\(\frac{4}{3}\)*\(\frac{81}{166}\)
=\(\frac{54}{83}\)

\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{98.101}\)
\(=\frac{5}{2}-\frac{5}{5}+\frac{5}{5}-\frac{5}{8}+....+\frac{5}{98}-\frac{5}{101}\)
\(=\frac{5}{2}-\frac{5}{101}=\frac{495}{202}\)
\(\frac{5}{2\times5}+\frac{5}{5\times8}+\frac{5}{8\times11}+...+\frac{5}{98\times101}\)
\(=\frac{5}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{98\times101}\right)\)
\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{5}{3}\times\frac{99}{202}=\frac{165}{202}\)

\(A=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{98.101}\)
\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{98.101}\right)\)
\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(A=\frac{4}{3}.\frac{99}{102}=\frac{66}{101}\)
\(\text{Ta có: }\) \(A=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{98.101}\)
\(=\frac{4.3}{2.5.3}+\frac{4.3}{5.8.3}+\frac{4.3}{8.11.3}+.....+\frac{4.3}{98.101.3}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+.....+\frac{3}{98.101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\frac{99}{102}=\frac{66}{101}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{95}-\frac{1}{98}\)
\(=\frac{1}{2}-\frac{1}{98}\)tự làm tiếp

a) đặt
\(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)
b)
đặt
\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)
\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)
Các hạng tử có dạng:
\(a_{n} = \left(\right. 3 n - 1 \left.\right) \left(\right. 3 n + 2 \left.\right)\)
Vì:
Ta khai triển:
\(\left(\right. 3 n - 1 \left.\right) \left(\right. 3 n + 2 \left.\right) = 9 n^{2} + 6 n - 3 n - 2 = 9 n^{2} + 3 n - 2\)
Vậy:
\(a_{n} = 9 n^{2} + 3 n - 2\)
Số cuối cùng là \(98 \cdot 101\), ta tìm \(n\) sao cho:
\(\left(\right. 3 n - 1 \left.\right) \left(\right. 3 n + 2 \left.\right) = 98 \cdot 101 \Rightarrow 3 n - 1 = 98 \Rightarrow n = 33\)
Vậy có 33 số hạng.
\(A = \sum_{n = 1}^{33} a_{n} = \sum_{n = 1}^{33} \left(\right. 9 n^{2} + 3 n - 2 \left.\right)\)
Áp dụng công thức tổng:
Với \(k = 33\), ta tính:
1. \(\sum 9 n^{2} = 9 \cdot \frac{33 \cdot 34 \cdot 67}{6} = 11253\)
2. \(\sum 3 n = 3 \cdot \frac{33 \cdot 34}{2} = 1683\)
3. \(\sum \left(\right. - 2 \left.\right) = - 2 \cdot 33 = - 66\)
\(A = 11253 + 1683 - 66 = \boxed{12870}\)
\(\boxed{A = 12870}\)