\(\sin^2x.sin^2y+sin^2x.cos^2y+\cos^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(\sin^2x.sin^2y+sin^2x.cos^2y+cos^2x\)

\(\sin^2x.\left(\sin^2y+cos^2y\right)+cos^2x\)

=sin2x.1+cos2x

=sin2x+cos2x

=1

18 tháng 7 2018

\(\left(sin^2x+cos^2x\right)cos^2x+sin^2x=cos^2x+sin^2x=1\)

18 tháng 7 2018

\(cos^4x+sin^2x.cos^2x+sin^2x\)

\(=cos^2x.cos^2x+sin^2x.cos^2x+sin^2x\)

\(=cos^2x\left(cos^2x+sin^2x\right)+sin^2x\)

\(=cos^2x.1+sin^2x\)

\(=cos^2x+sin^2x\)

\(=1\)

18 tháng 10 2019

\(1.\)

ĐKXĐ : \(x\ge4\)

\(pt\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=2\sqrt{x^2-16}+2x-12\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=x+4+2\sqrt{\left(x+4\right)\left(x-4\right)}+x-4-12\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=\left(\sqrt{x+4}+\sqrt{x-4}\right)^2-12\) \(\left(1\right)\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=y\) \(\left(y>0\right)\)

\(pt\left(1\right)\Leftrightarrow y=y^2-12\)

\(y^2-y-12=0\)

\(\Leftrightarrow y^2-4y+3y-12=0\)

\(\Leftrightarrow\left(y-4\right)\left(y+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-3\left(\text{loại}\right)\end{matrix}\right.\)

\(y=4\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}8-x\ge0\\x^2-16x=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\0x=64\left(\text{vô nghiệm}\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

NV
18 tháng 10 2019

1/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\Rightarrow x+\sqrt{x^2-16}=\frac{a^2}{2}\)

Phương trình trở thành:

\(a=2\left(\frac{a^2}{2}-6\right)\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=3\Rightarrow2x+2\sqrt{x^2-16}=9\)

\(\Rightarrow2\sqrt{x^2-16}=9-2x\) (\(x\le\frac{9}{2}\))

\(\Rightarrow4\left(x^2-16\right)=\left(9-2x\right)^2\)

Phương trình bậc 2 rồi đó, bạn tự giải

2/ Cho T rồi bắt làm gì bây giờ bạn ơi?

3/ Chứng minh cái gì bạn ơi?

4/ Không giải được bạn ơi, pt này chỉ giải được khi x; y là số nguyên tố, không phải số nguyên, mình gặp vài chục lần rồi nên vẫn nhớ :(

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)