
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


giải tương tự như câu hôm qua mình giải
để chứng minh A < \(\frac{1}{10}\). Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow A^2< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1.\left(3.5...99\right)}{2.4.6...100}.\frac{2.4.6...100}{\left(3.5.7...99\right).101}\)
\(=\frac{1}{101}< \frac{1}{10}\)
\(\Rightarrow A^2< \frac{1}{101}< \frac{1}{100}=\frac{1}{10^2}\Rightarrow A< \frac{1}{10}\)
để chứng minh A > \(\frac{1}{15}\). Ta thấy \(A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)
\(=\frac{1.\left(3.5...99\right)}{\left(2.4.6...98\right).100}.\frac{1.\left(2.4...98\right)}{2.\left(3.5...99\right)}\)
\(=\frac{1}{100}.\frac{1}{2}=\frac{1}{200}\)
\(\Rightarrow A^2>\frac{1}{200}>\frac{1}{225}=\frac{1}{15^2}\Rightarrow A>\frac{1}{15}\)

Bài làm
\(A=\frac{45^{10}\cdot5^{20}}{75^{15}}\)
\(A=\frac{\left(3^2\right)^{10}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot\left(5^2\right)^{15}}\)
\(A=\frac{3^{20}\cdot5^{30}}{3^{15}\cdot5^{30}}\)
\(A=3^5\)
Vậy \(A=3^5\)
\(B=\frac{2^{15}\cdot5^{20}}{6^6\cdot8^3}\)
\(B=\frac{2^{15}\cdot5^{20}}{2^6\cdot3^3\cdot\left(2^3\right)^3}\)
\(B=\frac{2^{15}\cdot5^{20}}{2^{15}\cdot3^3}\)
\(B=\frac{5^{20}}{3^3}\)
Vậy \(B=\frac{5^{20}}{3^3}\)

\(M=\frac{\left(-7\right).15.9.15.14}{9.49.7.15}=\frac{-15.2}{7}=\frac{-30}{7}.\)
\(N=\frac{200}{189}+\frac{1}{14}=\)1.12962962963
\(M=\left(\frac{-7}{9}\cdot\frac{9}{7}\right)\cdot\left(\frac{15}{49}\cdot\frac{14}{15}\right)\cdot15\)
\(M=\left(-1\right)\cdot\frac{2}{7}\cdot15\)
\(M=\frac{-30}{7}\)
\(N=\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{10}{3}+\frac{3}{9}\cdot\frac{3}{7}\cdot\frac{1}{2}\)
\(N=\frac{200\cdot2}{189\cdot2}+\frac{9\cdot3}{126\cdot3}\)
\(N=\frac{400}{378}+\frac{27}{378}\)
\(N=\frac{61}{51}\)
T i ck nha


#)Trả lời :
\(A=\frac{\left(140+70+42+28+20+15\right)}{420}\)
\(A=\frac{315}{420}=\frac{\left(315:105\right)}{\left(420:105\right)}=\frac{3}{4}\)
Vậy : \(A=\frac{3}{4}\)
#~Will~be~Pens~#

\(E=\left(\frac{-2}{3}.\frac{-9}{10}\right).\left(\frac{-5}{6}.\frac{-14}{15}\right).\left(\frac{-20}{21}.\frac{-27}{28}\right).\frac{-35}{36}\)
\(E=\frac{3}{5}.\frac{7}{9}.\frac{45}{49}.\frac{-35}{36}\)
\(E=\left(\frac{3}{5}.\frac{-35}{36}\right).\left(\frac{7}{9}.\frac{45}{49}\right)\)
\(E=\frac{-7}{12}.\frac{5}{7}\)
\(E=\frac{-5}{12}\)
vậy \(E=\frac{-5}{12}\)
E=-2/3.-5/6.-9/10.-14/15.-20/21.-27/28.-35/36
=-2/3.-5/2.3.-3.3/2.5.-2.7/3.5.-4.5/3.7.3.3.3/4.7.-5.7/4.3.3
=-5/12

b)B=(136/15 - 28/5 +31/5).21/24
B=(136/15-(28/5 - 31/5).21/24
B=(136/15 + 3/5).21/24
B=29/3.21/24
B=203/24
\(A=1.2.3...100-1.2.3...99-1.2.3...98.99^2\)
\(=1.2.3...99\left(100-1-99\right)\)
\(=1.2.3...99.0=0\)
Đặt mẫu số của A là B
Tính tử số của A :
5757 . 43 - 4343 . 57
= 101 . 57 . 43 - 43 . 101 . 57
= 0 ( vì 2 vế bằng nhau )
Vậy tử số = 0
Ta có : A = 0/B
=> A = 0
Tham khảo cách của mk nhé
cảm ơn nha