\(\frac{3a-b}{2a+15}+\frac{3b-a}{2b-15}\) với a-b=15,,b
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Ta có:\(\frac{3a-b}{2a+15}=\frac{3a-b}{2a+a-b}=\frac{3a-b}{3a-b}=1\)

          \(\frac{3b-a}{2b-15}=\frac{3b-a}{2b-\left(a-b\right)}=\frac{3b-a}{3b-a}=1\)  

=>P=1+1=2

10 tháng 2 2018

Ta có a = 15 + b

=> \(\frac{3a-b}{2a+15}+\frac{3b-a}{2b-15}\) = \(\frac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\frac{3b-\left(15+b\right)}{2b-15}\)

\(\frac{45+3b-b}{30+2b+15}+\frac{3b-15-b}{2b-15}\)

\(\frac{45+2b}{45+2b}+\frac{2b-15}{2b-15}\)= 1 + 1 = 2

10 tháng 8 2017

ta có : \(a-b=15\Leftrightarrow a=15+b\)

thay vào \(P\) ta có \(P=\dfrac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\dfrac{3b-\left(15+b\right)}{2b-15}\)

\(P=\dfrac{45+3b-b}{30+2b+15}+\dfrac{3b-15-b}{2b-15}=\dfrac{2b+45}{2b+45}+\dfrac{2b-15}{2b-15}\)

\(P=1+1=2\) vậy \(P=2\) với \(a-b=15\)

10 tháng 8 2017

Thay a-b=15 vào P có:

\(P=\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)

\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)

=1+1=2

Vậy P=2 TM đk a-b=15;\(a\ne-7,5;b\ne7,5\)

12 tháng 2 2017

Từ a-b=15 => a=15+b thay vào P ta được P=2

24 tháng 8

Giá trị của biểu thức \(A\) là \(A=-\frac{3}{8}\).

24 tháng 8

Ý là 3/8 á bạn


14 tháng 2 2020

Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)

Vậy \(P=9\)

Trừ cả 3 đi 1 ta còn

\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

Vói a+b+c=1 thì P=-1

Với a+b+c khác 0 thì

\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)

\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)

Vậy............

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)

20 tháng 5 2016

\(a-b=13\Rightarrow a=b+13\)

thay \(a=b+13\) vào biểu thức thì ta có:

\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)

\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)