Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)
\(=\frac{8ab}{a^4b^4-16}\)
b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
=> (a2 + 4).9 = a2(b2 + 9)
=> 9a2 + 36 = a2b2 + 9a2
=> a2b2 = 36
=> (ab)2 = 36
=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)
Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)
Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

a)Trong biểu thức A có (3-x)^2=(x-3)^2 nên ta có:
\(A=\left(2x+1\right)^2+2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+1+x-3\right)^2=\left(3x-2\right)^2\)
\(B=\frac{1-4x}{\left(4x-1\right)\left(3x-2\right)}=-\frac{4x-1}{\left(4x-1\right)\left(3x-2\right)}=\frac{-1}{3x-2}\)
b)Thay x=1/3 vào biểu thức A ta có:
\(A=\left(3.\frac{1}{3}-2\right)^2=\left(1-2\right)^2=\left(-1\right)^2=1\)
c)\(A.B=\left(3x-2\right)^2.\frac{-1}{3x-2}=-\frac{\left(3x-2\right)^2}{3x-2}=-\left(3x-2\right)=2-3x\)

a^2+4b=b^2+4a
=> (a-b)(a+b)-4(a+b)=0
=>(a-b-4)(a+b)=0
Đến đây đơn giản mà ^^ em ko làm được thì ib nhé.
Bài làm:
Ta có: \(a^2+4b=b^2+4a\)
\(\Leftrightarrow\left(a^2-b^2\right)-\left(4a-4b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a+b-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=0\\a+b=4\end{cases}}\)
+ Nếu \(a=0\Rightarrow4b=7\Leftrightarrow b=\frac{7}{4}\)
Thay vào tính được:
a) \(S=a+b=0+\frac{7}{4}=\frac{7}{4}\)
b) \(Q=a^3+b^3=0^3+\left(\frac{7}{4}\right)^3=\frac{343}{64}\)
+ Nếu \(a+b=4\Rightarrow b=4-a\)
Thay vào tính được:
a) \(S=a+b=4\)
b) \(b=4-a\Leftrightarrow a^2+4\left(4-a\right)=7\)
\(\Leftrightarrow a^2-4a+9=0\)
\(\Leftrightarrow\left(a-2\right)^2+5=0\)
\(\Rightarrow∄a\)
C = a\(^3\) + b\(^3\) + 4a + 4b - 2
C = (\(a^3\) + b\(^3\)) + 4(a+ b) - 2
C = (\(a+b\))(\(a^2-ab+b^2\)) + 4(a + b) -2
C = (a + b)[(a\(^2\) + 2ab + b\(^2\)) - 3ab] + 4(a+ b) - 2
C = (a+ b)[(\(a+b\))\(^2\) - 3ab] + 4(a+ b) - 2 (1)
Thay a + b = 5; ab = 4 vào biểu thức (1) ta có:
C = 5.[5\(^2\) - 3.4] + 4.5 - 2
C = 5.[25 - 12] + 20 - 2
C = 5.13 + 20 - 2
C = 65 + 20 - 2
C = 85 - 2
C = 83