\(\frac{18}{1.2.3}+\frac{18}{2.3.4}+\frac{18}{3.4.5}+...+\frac{18}{25.26.27}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

\(\frac{18}{1.2.3}+\frac{18}{2.3.4}+...+\frac{18}{25.26.27}\)

\(=18.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{25.26.27}\right)\)

\(=18.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{25.26}-\frac{1}{26.27}\right)\)

\(=18.\left(\frac{1}{1.2}-\frac{1}{26.27}\right)\)

\(=18.\left(\frac{1}{2}-\frac{1}{702}\right)\)

\(=18.\left(\frac{351}{702}-\frac{1}{702}\right)\)

\(=18.\frac{350}{702}\)

\(=\frac{350}{39}\)

4 tháng 5 2018

=18x(1/1x2x3+1/2x3x4+1/3x4x5+...+1/25x26x27). =18x(1/1x2-1/2x3+1/2x3-1/3x4+...+1/25x26-1/26x27).                                                                 =18x(1/1x2-1/26x27).                                                =18x175/351.                                                             =350/39

Bài 1 \(F=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)

        \(2F=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{7.8}-\frac{1}{8.9}+\frac{1}{8.9}-\frac{1}{9.10}\)

        \(2F=\frac{1}{1.2}-\frac{1}{9.10}\)\(=\frac{44}{90}\)

          \(F=\frac{11}{45}\)

Vậy \(F=\frac{11}{45}\)

Bài 2 : 

\(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

    \(\Rightarrow\)\(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

    \(\Rightarrow\)\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}< B< \frac{1}{2.3}+..+\frac{1}{8.9}\)

     \(\Rightarrow\)\(\frac{1}{3}-\frac{1}{10}< B< \frac{1}{2}-\frac{1}{9}\)

     \(\Rightarrow\)\(\frac{7}{30}\)\(< \frac{7}{18}\left(đpcm\right)\)

Hết nha bn.Mk ik ngủ.Chúc bạn học tốt

NM
25 tháng 1 2021

ta có 

tử số \(\frac{1}{19}+\frac{2}{18}+..+\frac{18}{2}+\frac{18}{1}=\frac{1}{19}+1+\frac{2}{18}+1+..+\frac{18}{2}+1\)

\(\frac{20}{19}+\frac{20}{18}+..+\frac{20}{2}=20\left(\frac{1}{19}+\frac{1}{18}+..+\frac{1}{2}\right)\)

Do đó ta có phân số trên bằng 20

4 tháng 5 2018

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{20\cdot21\cdot22}=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{20\cdot21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{20\cdot21}-\frac{1}{21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{231}{462}-\frac{1}{462}\right)=\frac{1}{2}\cdot\frac{230}{462}=\frac{1}{2}\cdot\frac{115}{231}=\frac{115}{462}\)

15 tháng 5 2019

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

15 tháng 5 2019

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)

29 tháng 4 2018

* Công thức :  \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{2015.2016.2017}\)

\(\Rightarrow A=3.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{2}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\left(\frac{2033136}{4066272}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\frac{2033135}{4066272}>3.\frac{1355424}{4066272}\)

\(\Rightarrow A>3.\frac{1}{3}\)

\(\Rightarrow A>1\)

Chúc bạn học tốt !!! 

29 tháng 4 2018

Thanks bạn Hỏa Long Natsu

9 tháng 4 2018

* Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

9 tháng 4 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{20.21.22}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{20.21}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\left(\frac{231}{462}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\frac{230}{462}\)

\(=\frac{115}{462}\)

Chúc bạn học tốt !!! 

22 tháng 4 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{185}{741}\)

12 tháng 7 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)

\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)

\(\frac{1}{1.2}-\frac{1}{49.50}\)

\(\frac{1}{2}-\frac{1}{2450}\)

\(\frac{612}{1225}\)

đặt

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)

\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\)

\(\Rightarrow\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)

\(\Rightarrow\frac{1}{1.2}-\frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2450}=\frac{621}{1225}\)

\(\Rightarrow A=\frac{306}{1225}\)

5 tháng 8 2016

tách ra rùi giải bn nhé