K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
16 giờ trước (20:34)

1 tháng 4 2017

a) Diện tích hình phẳng cần tìm là:

S=2∫−1(x2+1)dx=(x33+x)∣∣2−1=6

b) Diện tích hình phẳng cần tìm là:

S=e∫1e| lnx |dx=e∫1e|lnx|dx+e∫1|lnx|dx=−1∫1elnxdx+e∫1lnxdxS=∫1ee|ln⁡x|dx=∫1ee|ln⁡x|dx+∫1e|ln⁡x|dx=−∫1e1ln⁡xdx+∫1eln⁡xdx

Mặt khác:

∫lnxdx=xlnx−∫xdlnx=xlnx−∫dx=xlnx−x+C∫ln⁡xdx=xln⁡x−∫xdln⁡x=xln⁡x−∫dx=xln⁡x−x+C

Do đó:

S=−1∫1elnxdx+e∫1lnxdx=1e∫1lnxdx+e∫1xdx=(xlnx−x)∣∣∣1e1+(xlnx−x)∣∣e1=2(1- \(\dfrac{1}{e}\))

Khó quá, làm mà điên não



27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

1 tháng 4 2017

a)

Ta có:

∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos⁡2xsin2xdx=12∫0π2cos⁡2x(1−cos⁡2x)dx=12∫0π2[cos⁡2x−1+cos⁡4x2]dx=14∫0π2(2cos⁡2x−cos⁡4x−1)dx=14[sin⁡2x−sin⁡4x4−x]0π2=−14.π2=−π8

b)

Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.

Ta tách thành tổng của hai tích phân:

∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln⁡2+2−xln⁡2)|−10+(2xln⁡2+2−xln⁡2)|01=1ln⁡2

c)

∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln⁡|x|−6x]|12=(2+12+11ln⁡2−3)−(12+6−6)=212+11ln⁡2

d)

∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln⁡|x−3|−ln⁡|x+1|]|02=14[1−ln⁡2−ln⁡3]=14(1−ln⁡6)

e)

∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin⁡2x)dx=[x−cos⁡2x2]|0π2=π2+1

g)

I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsin⁡x+sin2x)dx=[x33]|0π+2∫0πxsin⁡xdx+12∫0π(1−cos⁡2x)dx

Tính :J=∫π0xsinxdxJ=∫0πxsin⁡xdx

Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x

Suy ra:

J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π

Do đó:

I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6



NV
20 tháng 4 2020

Câu 3:

Phương trình hoành độ giao điểm:

\(x^3=x^2-4x+4\Leftrightarrow x^3-x^2+4x-4=0\Rightarrow x=1\)

\(x^3=0\Rightarrow x=0\)

\(x^2-4x+4=0\Rightarrow x=2\)

Diện tích hình phẳng:

\(S=\int\limits^1_0x^3dx+\int\limits^2_1\left(x^2-4x+4\right)dx=\frac{7}{12}\)

Câu 4:

Phương trình hoành độ giao điểm:

\(x^3-3x+2=x+2\Leftrightarrow x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-2}\left(x^3-3x+2-x-2\right)dx+\int\limits^2_0\left(x+2-x^3+3x-2\right)dx=8\)

NV
20 tháng 4 2020

Câu 1:

Phương trình hoành độ giao điểm: \(cosx=0\Rightarrow x=\frac{\pi}{2}\)

\(\Rightarrow S=\int\limits^{\frac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\frac{\pi}{2}}cosxdx=2\)

Câu 2:

Phương trình hoành độ giao điểm: \(x.e^x=0\Rightarrow x=0\)

\(\Rightarrow S=\int\limits^3_0xe^x-\int\limits^0_{-2}xe^xdx\)

Xét \(I=\int x.e^xdx\Rightarrow\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=xe^x-e^x+C=\left(x-1\right)e^x+C\)

\(\Rightarrow S=\left(x-1\right)e^x|^3_0-\left(x-1\right)e^x|^0_{-2}=2e^3+1-\left[-1+\frac{3}{e^2}\right]=2e^3+2-\frac{3}{e^2}\)

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

27 tháng 4 2017

Hỏi đáp Toán

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0 2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là 3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx 4 Tính L=\(\int_0^{\pi}\) xsinxdx 5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\) A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4 6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai...
Đọc tiếp

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0

2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là

3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx

4 Tính L=\(\int_0^{\pi}\) xsinxdx

5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\)

A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4

6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai đường thẳng x=-3,x=-2

7Tính diện tích hình phẳng dc giới hạn bởi các duong92/x^2-4x+3/ và y =x+3

8the tích vậ tròn xoay khi quay miền(D) giới hạn bởi (d) :y=x,(P):x^2-x khi quay qanh trục Ox là

9 một vật chuyển động dần đều với vận tốc v(t)=160-10t(m/s). Tính quảng đường s mà vật di chuyển trong khoảng thời gian từ điểm t=0(s) đến thời điểm vật dừng lại

10 cho số phức z thỏa mãn \(\frac{z}{1-2i}+\overline{z}=2.tìm\) phần thực a của số phức w=z^2-z là

11 trong mặt phẳng oxy tìm tập hợp điểm biểu diễn các số phức z thỏa mãn /z-i/=/(1+i).z/ là đường tròn có phuong trình

4
NV
10 tháng 5 2020

9.

Vật dừng lại khi \(v=0\Leftrightarrow160-10t=0\Rightarrow t=16\)

\(s=\int\limits^{t_2}_{t_1}v\left(t\right)dt=\int\limits^{16}_0\left(160-10t\right)dt=\left(160t-5t^2\right)|^{16}_0=1280\left(m\right)\)

10.

Đặt \(z=x+yi\)

\(\frac{x+yi}{1-2i}+x-yi=2\Leftrightarrow\left(1+2i\right)\left(x+yi\right)+5x-5yi=10\)

\(\Leftrightarrow6x-2y+\left(2x-4y\right)i=10\)

\(\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\2x-4y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow z=2+i\)

\(\Rightarrow w=\left(2+i\right)^2-\left(2+i\right)=1+3i\)

Phần thực bằng 1

11.

Đặt \(z=x+yi\)

\(\left|x+\left(y-1\right)i\right|=\left|\left(1+i\right)\left(x+yi\right)\right|\)

\(\Leftrightarrow\left|x+\left(y-1\right)i\right|=\left|x-y+\left(x+y\right)i\right|\)

\(\Leftrightarrow x^2+\left(y-1\right)^2=\left(x-y\right)^2+\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2y-1=0\)

Hoặc dạng chính tắc:

\(x^2+\left(y+1\right)^2=2\)

NV
10 tháng 5 2020

6.

Hổng hiểu đề bài?

Là diện tích hình phẳng giới hạn bởi các đường \(y=x^2-4;y=x^2-2x;x=-3;x=-2\) đúng ko?

Làm theo đề này nhé

Hoành độ giao điểm: \(x^2-4=x^2-2x\Leftrightarrow x=2\notin\left[-3;-2\right]\)

\(x^2-4=0\Leftrightarrow x=\pm2\)

\(x^2-2x=0\Rightarrow x=\left\{0;2\right\}\notin\left[-3;-2\right]\)

Diện tích:

\(S=\int\limits^{-2}_{-3}\left(x^2-2x-\left(x^2-4\right)\right)dx=\int\limits^{-2}_{-3}\left(4-2x\right)dx=\left(4x-x^2\right)|^{-2}_{-3}=9\)

7.

Đề này thì ko dịch nổi

8.

Phương trình hoành độ giao điểm:

\(x^2-x=x\Leftrightarrow x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Thể tích:

\(V=\pi\int\limits^2_0\left[x^2-\left(x^2-x\right)^2\right]dx=\pi\int\limits^2_0\left(-x^4+2x^3\right)dx\)

\(=\pi\left(-\frac{1}{5}x^5+\frac{1}{2}x^4\right)|^2_0=\frac{8\pi}{5}\)