Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )

a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H

Giả thiết chung:
- Tam giác MNP cân tại M ⇒ \(M N = M P\)
- \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
- \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.
🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)
Xét hai tam giác vuông MHN và MHP:
Ta có:
- \(M H\) chung (cạnh huyền trong hai tam giác vuông)
- \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
- \(M N = M P\) (do tam giác MNP cân tại M)
→ Hai tam giác vuông có:
- Cạnh huyền bằng nhau: \(M N = M P\)
- Cạnh góc vuông chung: \(M H\)
⇒ \(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)
✅ ĐPCM
🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)
Đây là bước kẻ hình:
- Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
- Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)
Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:
✅ Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).
🔷 Câu c): Chứng minh tam giác MIK là tam giác cân
Ta cần chứng minh: \(M I = M K\)
Ý tưởng:
Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.
Phân tích và chứng minh:
- Từ câu a: \(\triangle M H N = \triangle M H P\) ⇒ \(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
- Trong hai tam giác vuông \(\triangle H I K\) và \(\triangle H K I\), ta thấy:
- \(H I = H K\) (do đối xứng)
- \(\angle I H N = \angle K H P = 90^{\circ}\)
- \(H\) là chung
⇒ Hai tam giác \(\triangle H M I\) và \(\triangle H M K\) bằng nhau
⇒ Suy ra: \(M I = M K\)
✅ Kết luận:
Tam giác \(M I K\) có \(M I = M K\) ⇒ là tam giác cân tại M
✅ ĐPCM