Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) \(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2018}\right)\)
\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}....\frac{2018-1}{2018}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2017}{2018}=\frac{1.2.3...2017}{2.3.4...2018}=\frac{1}{2018}\)
c) Giữa các biểu thức là dấu nhân hay dấu cộng vậy bạn?
d)
\(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(D=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
e) \(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
\(2E=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(2E=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{99-97}{97.99}\)
\(2E=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow E=\frac{16}{99}\)

a) \(2^{2014}\) và \(3^{1343}\)
Ta có:
\(2^{2014}=(2^3)^{\frac{2014}{3}}=8^{\frac{2014}{3}}< 9^{\frac{2014}{3}}\)
\(3^{1343}=(3^2)^{\frac{1343}{2}}=9^{\frac{1343}{2}}> 9^{\frac{2014}{3}}\)
\(\rightarrow 2^{2014}< 3^{1343}\)
b) \(31^{11}\) và \(17^{44}\)
Có: \(17^{44}=(17^4)^{11}> (17.2)^{11}>31^{11}\)
c)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
\(\Rightarrow 2A=1+\frac{1}{2^1}+\frac{1}{2^2}+..+\frac{1}{2^{49}}\)
Lấy vế sau trừ vế trước thu được:
\(2A-A=1-\frac{1}{2^{50}}< 1\)
\(\Leftrightarrow A< 1\)
d) \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow 3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
Lấy vế sau trừ vế trước:
\(\Rightarrow 3B-B=1-\frac{1}{3^{100}}< 1\)
\(\Leftrightarrow 2B< 1\Rightarrow B< \frac{1}{2}\)

Theo bài ra, ta có: \(B=\dfrac{2018}{1}+\dfrac{2017}{2}+\dfrac{2016}{3}+...+\dfrac{1}{2018}\)
\(B=\left(\dfrac{2018}{1}+1\right)+\left(\dfrac{2017}{2}+1\right)+\left(\dfrac{2016}{3}+1\right)+...+\left(\dfrac{1}{2018}+1\right)-2018\)
\(B=2019+\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}-2018\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\left(2019-2018\right)\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+1\)
\(B=\dfrac{2019}{2}+\dfrac{2019}{3}+...+\dfrac{2019}{2018}+\dfrac{2019}{2019}\)
\(B=2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)\)
Khi đó:\(\dfrac{B}{A}=\dfrac{2019\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}}\)
\(\Rightarrow\dfrac{B}{A}=2019\), là 1 số nguyên.
Vậy \(\dfrac{B}{A}\) là số nguyên.

*)\(2^3=8;2^6=64\)
Mà \(8< 64=>2^3< 2^6\)
*)\(\left(\left(-\dfrac{1}{2}\right)^2\right)^3=\left(-\dfrac{1}{2}\right)^6=\left(-\dfrac{1^6}{2^6}\right)=\dfrac{1}{64}\)
\(\left(-\dfrac{1}{2}\right)^5=\left(\dfrac{-1^5}{2^5}\right)=\left(\dfrac{-1}{32}\right)\)
Vì \(\dfrac{1}{64}>\left(\dfrac{-1}{32}\right)\)
\(=>\left(\left(-\dfrac{1}{2}\right)^2\right)^3>\left(-\dfrac{1}{2}\right)^5\)

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)

Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)