
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b,
Từ \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
+) \(\frac{x}{8}=2\Rightarrow x=2.8\Rightarrow x=16\)
+) \(\frac{y}{12}=2\Rightarrow y=2.12\Rightarrow y=24\)
+) \(\frac{z}{15}=2\Rightarrow z=2.15\Rightarrow z=30\)
Vậy x= 16; y= 24; z= 30

x/2=y/3=z/5
Suy ra 2x/4=y/3=3z/15
Suy ra 2x/4=y/3=3z/15=2x+y-3z/4+3-15=-8/-8=1 ( tính chất dãy tỉ số bằng nhau)
Suy ra +)2x/4=1 suy ra x=2
+) y/3=1 suy ra y=3
+)3z/15=1 suy ra z=5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+y-3z}{2\cdot2+3-3\cdot5}=\frac{-8}{-8}=1\)
=>\(\begin{cases}x=2\cdot1=2\\ y=3\cdot1=3\\ z=5\cdot1=5\end{cases}\)

Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)
\(\Leftrightarrow\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}=\frac{20z-24y+30x-20z+24y-30x}{4^2+5^2+6^2}\)
\(=\frac{0}{4^2+5^2+6^2}=0\)
\(\Rightarrow\hept{\begin{cases}20z=24y\\30x=20z\\24y=30x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\\4y=5x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{z}{6}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{6}\\\frac{y}{5}=\frac{x}{4}\end{cases}}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)
\(\Leftrightarrow\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Sau đó, áp dụng tính chất của dãy tỉ số bằng nhau là được nhé.

Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)
\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)

Có: \(\frac{y-2}{3}=\frac{2y-4}{6};\frac{z-3}{4}=\frac{3z-9}{12}\)
\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Vì \(\frac{x-1}{2}=1\Rightarrow x-1=1.2=2\Rightarrow x=2+1=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3.1=3\Rightarrow y=3+2=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=1.4=4\Rightarrow z=4+3=7\)
Tự kết luận
6x=4y=3z
=>\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
mà x+2y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+2\cdot3-4}=\frac{8}{2+6-4}=\frac{8}{2+2}=2\)
=>\(\begin{cases}x=2\cdot2=4\\ y=2\cdot3=6\\ z=2\cdot4=8\end{cases}\)
Ta có: 6x=4y=3z
⇒6x12=4y12=3z12
⇒x2=y3=z4
Lại có: x+2y−z=8
Áp dụng tínhc chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+2.3-4}=\frac84=2\)
\(x=2.2=4\)
\(y=2.3=6\)
\(z=2.4=8\)
Vậy, (x,y,z)=(4,6,8)