
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Giả sử \(1\le x\le y\le z\) Khi đó
phương trình đã cho \(\Leftrightarrow xyz=x+y+z\le3z\Rightarrow x.y\le3\) Vì x,y,z thuộc Z+ \(\Rightarrow x.y\in\left\{1;2;3\right\}\)
Nếu \(xy=1\Rightarrow x=y=1\Rightarrow2+z=z\left(S\right)\)
Nếu \(xy=2\Rightarrow x=1;y=2;z=3\)
Nếu \(x.y=3\Rightarrow x=1;y=3\Rightarrow z=2\) <y (vô lí)
Vậy x;y;z là hoán vị của 1;2;3


Giả sử \(1\le x< y< z\)
\(\Rightarrow\frac{1}{x}>\frac{1}{y}>\frac{1}{z}\)
\(\Rightarrow\frac{3}{x}>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> x < 3 (1)
Mà \(\frac{1}{x}< 1\) => x > 1 (2)
Từ (1) và (2) => x = 2
Ta có: \(\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
=> y < 4 (3)
Mà x < y => 2 < y (4)
Từ (3) và (4) => y = 3
Lại có: \(\frac{1}{3}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{z}=\frac{1}{6}\)
=> z = 6
Vậy x = 2, y = 3, z = 6