\(x-y+2xy=7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

11 tháng 3 2019

1,b, 2xy - x = y + 5

<=> 4xy - 2x = 2y + 10

<=> 2x(2y - 1) - (2y - 1) = 11

<=> (2x - 1)(2y - 1) = 11

Lập bảng ra làm nốt

11 tháng 3 2019

\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)

\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)

\(\Leftrightarrow y-2-3xy+6x+x=0\)

\(\Leftrightarrow-3xy+7x+y-2=0\)

\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)

\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)

Lập bảng làm nốt

14 tháng 8 2017

b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)

Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)

Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)

\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)

Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)

Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

20 tháng 8 2015

a) \(\frac{x^2+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=x+\frac{3}{x+1}\)

x là số nguyên nên để \(\frac{x^2+x+3}{x+1}\) nguyên thì \(\frac{3}{x+1}\) nguyên => 3 chia hết cho x+ 1

=> x +1 \(\in\)Ư(3) = {-3;-1;1;3}

+) x+ 1 = -3 => x = -4

+) x+ 1= -1 => x = -2

+) x+ 1 = 1 => x = 0 

+) x + 1 = 3 => x = 2

Vậy...

b) x + 2xy + y = 0

=> x(1 + 2y) = -y . Vì y nguyên nên 1 + 2y khác 0  ( Do nếu 1 + 2y = 0 thì y = -1/2 không phải là số nguyên)

=> x = \(\frac{-y}{2y+1}\)

Để x nguyên thì y phải chia hết cho 2y + 1

=> 2y chia hết cho 2y + 1

Mà 2y + 1 luôn chia hết cho 2y + 1 nên hiệu (2y + 1) - 2y chia hết cho 2y + 1

=> 1 chia hết cho 2y + 1 => 2y + 1 \(\in\)Ư(1) = {-1;1}

+) Nếu 2y + 1 = 1 => y = 0 

+) Nếu 2y + 1 = -1 => y = -1 

Thử lại: y = 0 => x = 0 ( Chọn)

y = -1 => x = -1 ( Chọn)

Vậy (x;y) = (0;0) hoặc (-1;-1)