
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


thêm x2 + y2 + z2 = 1 nha
HT nha vinh

Ta có:
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
Ta lại có:
\(x^7+y^7\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^4y^x-x^3y^4\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)+x^3y^3z\) ( Thay x + y = -z )
Ta sẽ đi tính \(x^3+y^4;x^4+y^4\)
Lại có:
1/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-z^3+3xyz\)
2/ \(x^2+y^2=\left(x+y\right)^2-2xy=z^2-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(z^2-2xy\right)^2-2x^2y^2=z^4-4xyz^2+2x^2y^2\)
Như vậy \(x^7+y^7=\left(-z^3+3xyz\right)\left(z^4-4xyz^2+2x^2y^2\right)+x^3y^3z\)
\(\Rightarrow x^7+y^7=-z^7+7xyz^5-14x^2y^2z^3+7x^3y^3z\)
\(\Rightarrow x^7+y^7+z^7=7xyz^5-14x^2y^2z^3+7x^3y^3z\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left(z^4-2xyz^2+x^2y^2\right)\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(z^2-2xy\right)+x^2y^2\right]\)
Mà \(z^2-2xy=x^2+y^2\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(x^2+y^2\right)+x^2y^2\right]\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left(x^2z^2+y^2z^2+x^2y^2\right)\)


1) tìm x :
5x. (x - 3 ) + 7.(x - 3 ) = 0
<=> ( x -3 ) . ( 5x +7 ) = 0
<=> x - 3 = 0 hoặc 5x + 7 = 0
<=> x = 3 hoặc x = -7/5
Vậy x € { 3 ; -7/5 }
3 ) chứng mình rằng :
7 1996 + 71995 + 71994 chia hết cho 57
71996 + 71995 + 71994
<=> 71994 . 72 + 71994 .7 + 71994
<=> 71994 . ( 72 + 7 + 1 )
<=> 71994 . 57 chia hết cho 57 ( vì 57 chia hết cho 57 ) ( đ..p.c.m )
Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x^2-8x-21=0\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)
Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)
\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)
TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)
TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)
C, tương tự
Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)
\(=7^{1994}.57\)\(⋮\)\(7\)
\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)

từ x+y+z=0 => x=-(x+y)
\(x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5=x^5-x^5+y^5-y^5-5\left(x^4y+2x^3y^2+2x^2y^3+xy^4\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)(1)
\(x^2+y^2+z^2=x^2+y^2+\left[-\left(x+y\right)^2\right]=x^2+y^2+\left(x+y\right)^2=2\left(x^2+y^2+xy\right)\)(2)
\(x^7+y^7+z^7=x^7+y^7-\left(x+y\right)^7=-7xy\left(x^5+3x^4y+5x^3y^2+5x^2y^3+3xy^4+y^5\right)\)
\(=-7xy\left(x+y\right)\left(x^2+y^2+xy\right)\)(đoạn này tách như chỗ mũ 5 sẽ ra) (3)
nhân 10 với (3) và 7 với (1)(2) sẽ ra 2 vế = nhau của điều phải chứng minh.
đây là các phương trình bậc cao, em lên gg gõ bảng Paxcan sẽ ra nha! có qui luật, sắp thi HSG đúng k? ráng học thuộc để áp dụng nha! chúc em học tốt

Đề sai mình sửa lại cho bạn :cho x+y+z =0 CMR:\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\)
đặt x+y+z =a , xy+yz+xz =b ,xyz =c
\(x^7+y^7+z^7=a^7-7a^5b+14a^3b^2+7a^4c-7ab^3-21ab^2c+7b^2c+7ac^2\)(1)
mà a= x+y+z =0 ,thay b = xy+yz+xz ,c =xyz vào (1)
\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\) (dfcm)

\(\left(x^2+7\right)\left(x^2-7\right)< 0\)
mà \(x^2+7>=7>0\forall x\)
nên \(x^2-7< 0\)
=>\(x^2< 7\)
=>\(-\sqrt{7}< x< \sqrt{7}\)
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2\right\}\)