\(2^{x-2}.3^{y-3}.5^{z-1}=144\)

Giải giúp ạ !!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2^{x-2}.3^{y-3}.5^{z-1}=144=2^4.3^2.5^0\)

\(\Rightarrow\hept{\begin{cases}x-2=4\Rightarrow x=6\\y-3=2\Rightarrow y=5\\z-1=0\Rightarrow z=1\end{cases}}\)

19 tháng 10 2019

\(2^{x-2}.3^{y-3}.5^{z-1}=144\)

mà 144 =  24.32

=> \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.1=2^4.3^2.5^0\)

=> \(\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)

Vậy...

8 tháng 11 2016

Các bạn ơi! Dấu chấm là dấu nhân nha!

8 tháng 11 2016

Ta có: \(144=2^4.3^2.5^0\)

Suy ra: \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)

Suy ra: \(2^{x-2}=2^4;3^{y-3}=3^2;5^{z-1}=5^0\)

Suy ra: \(x-2=4;y-3=2\)\(z-1=0\)

Hay \(x=6;y=5\)\(z=1\)

25 tháng 10 2016

CTV mới học lớp 7 thui ak                                    

31 tháng 8

Giải:

\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)

\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0

\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)

Vậy \(x\in\) {0; 25}



31 tháng 8

\(x^5\) = 2\(x^7\)

\(x^5\) - 2\(x^7\) = 0

\(x^5\).(1 - 2\(x^2\)) = 0

\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)

Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}



31 tháng 8

Giải:

\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)

\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0

\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)

Vậy \(x\in\) {0; 25}




31 tháng 8

\(x^5\) = 2\(x^7\)

\(x^5\) - 2\(x^7\) = 0

\(x^5\).(1 - 2\(x^2\)) = 0

\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)

Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}


10 tháng 7 2016

Phân tích 144 thành thừa số nguyên tố, ta được: 

144 = 24.32

Mà theo đề:

2x-2 . 3y-3 . 5z-1 = 144

=> 2x-2 . 3y-3 . 5z-1 = 24 . 32 . 50 (Lưu ý: 50 = 1)

=> x - 2 = 4 và y - 3 = 2 và z - 1 = 0

=> x = 6 và y = 5 và z = 1

Vậy...

Ta thấy \(144=2^4.3^2\)

Ta có : \(2^{x-2}.3^{y-3}.5^{z-1}=144\)

\(=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)

\(=>\left(x-2\right)\left(y-3\right)\left(z-1\right)=4.2.0\)

\(=>x-2=4=>x=6\)

\(=>x-3=2=>x=5\)

\(=>z-1=0=>z=1\)

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu

24 tháng 3 2020

\(\Leftrightarrow\frac{4}{9}x^2=\frac{9}{16}y^2=\frac{25}{36}z^2\)

\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2\)

Áp dụng t/c dãy tỉ số bằng nhau ta được:\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2=\frac{900.\left(x^2+y^2+z^2\right)}{2025+1600+1296}=\frac{900.724}{4921}\)

=> x ~ 17,26; y ~ 15,34; z ~ 13,81.