K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

3 tháng 1 2019

\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)

Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.

Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ

\(\Rightarrow\)5y là số chẵn

\(\Rightarrow\)y là số chắn

Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn

\(\Rightarrow\)2|x| là số lẻ

\(\Rightarrow\)x=0

Thay x=0 vào biểu thức ta có: 

\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)

\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)

\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)

\(\Leftrightarrow5y+5y^2+1+y=105\)

\(\Leftrightarrow5y^2+6y+1=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\)

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)

Mà \(x;y\in Z\Rightarrow y=4\)

Vậy x=0;y=4(tmyc)

24 tháng 2 2020

Tham khảo câu hỏi của White Boy nhé ~"Huy"

18 giờ trước (9:44)
Bước 1: Biểu diễn các biến theo một biến chung  Từ phương trình 2x=3y2 x equals 3 y2𝑥=3𝑦, có thể suy ra x=32yx equals 3 over 2 end-fraction y𝑥=32𝑦.
Từ phương trình 5y=7z5 y equals 7 z5𝑦=7𝑧, có thể suy ra z=57yz equals 5 over 7 end-fraction y𝑧=57𝑦
Bước 2: Thay thế vào phương trình thứ ba  Các biểu thức của xx𝑥 zz𝑧theo yy𝑦sẽ được thay vào phương trình 3x+y−z=673 x plus y minus z equals 673𝑥+𝑦−𝑧=67.
Thay thế, phương trình trở thành 3(32y)+y−57y=673 open paren 3 over 2 end-fraction y close paren plus y minus 5 over 7 end-fraction y equals 67332𝑦+𝑦−57𝑦=67
Bước 3: Giải phương trình để tìm giá trị của yy𝑦  Phương trình sẽ được đơn giản hóa và giải để tìm yy𝑦:
92y+y−57y=679 over 2 end-fraction y plus y minus 5 over 7 end-fraction y equals 6792𝑦+𝑦−57𝑦=67.
Quy đồng mẫu số, ta có 6314y+1414y−1014y=6763 over 14 end-fraction y plus 14 over 14 end-fraction y minus 10 over 14 end-fraction y equals 676314𝑦+1414𝑦−1014𝑦=67.
63+14−1014y=67the fraction with numerator 63 plus 14 minus 10 and denominator 14 end-fraction y equals 6763+14−1014𝑦=67.
6714y=6767 over 14 end-fraction y equals 676714𝑦=67.
y=67×1467=14y equals the fraction with numerator 67 cross 14 and denominator 67 end-fraction equals 14𝑦=67×1467=14
Bước 4: Tìm giá trị của xx𝑥 zz𝑧  Giá trị của yy𝑦sẽ được sử dụng để tìm xx𝑥 zz𝑧:
x=32y=32×14=21x equals 3 over 2 end-fraction y equals 3 over 2 end-fraction cross 14 equals 21𝑥=32𝑦=32×14=21.
z=57y=57×14=10z equals 5 over 7 end-fraction y equals 5 over 7 end-fraction cross 14 equals 10𝑧=57𝑦=57×14=10
Kết quả cuối cùng  Các giá trị của xx𝑥, yy𝑦, và zz𝑧 x=21x equals 21𝑥=21, y=14y equals 14𝑦=14, và z=10z equals 10𝑧=10.
17 giờ trước (10:16)

Vì 2x=3y nên 10x=15y

Vì 5y=7z nên 15y=21z

Suy ra 10x=15y=21z

Suy ra 10x/210=15y/210=21z/210

Suy ra x/21=y/14=z/10

Suy ra 3x/63=y/14=z/10

Suy ra 3x/63=y/14=z/10=3x-y+z/63-14+10=67/67=1 ( tính chất dãy tỉ số bằng nhau)

Suy ra +)3x/63=1 suy ra x=21

+) y/14=1 suy ra y=14

+)z/10=1 suy ra z=10

17 giờ trước (10:18)

Tìm các số thực x, y, z thỏa mãn:
2x=3y, 5y=7z và 3x+y-z=67

Chúng ta có ba điều kiện (ba phương trình) mà ba số x, y, z cần thỏa mãn:

  1. \(2 x = 3 y\)
  2. \(5 y = 7 z\)
  3. \(3 x + y - z = 67\)

Chúng ta sẽ tìm cách biểu diễn các số x và z theo y để đưa về một phương trình chỉ còn y.

Từ điều kiện thứ nhất: \(2 x = 3 y\)
Nếu ta coi \(y\) là một số nào đó, ví dụ \(y = 2\), thì \(2 x = 3 \times 2 = 6\), suy ra \(x = 3\).
Nếu ta coi \(y = 4\), thì \(2 x = 3 \times 4 = 12\), suy ra \(x = 6\).
Ta thấy rằng \(x\) luôn bằng \(\frac{3}{2}\) lần \(y\). Hay nói cách khác, \(x = \frac{3}{2} y\).

Từ điều kiện thứ hai: \(5 y = 7 z\)
Nếu ta coi \(y = 7\), thì \(5 \times 7 = 7 z\), suy ra \(35 = 7 z\), vậy \(z = 5\).
Nếu ta coi \(y = 14\), thì \(5 \times 14 = 7 z\), suy ra \(70 = 7 z\), vậy \(z = 10\).
Ta thấy rằng \(z\) luôn bằng \(\frac{5}{7}\) lần \(y\). Hay nói cách khác, \(z = \frac{5}{7} y\).

Bây giờ, chúng ta sẽ thay \(x = \frac{3}{2} y\)\(z = \frac{5}{7} y\) vào điều kiện thứ ba: \(3 x + y - z = 67\).
Ta có:
\(3 \times \left(\right. \frac{3}{2} y \left.\right) + y - \left(\right. \frac{5}{7} y \left.\right) = 67\)

Thực hiện phép nhân:
\(\frac{9}{2} y + y - \frac{5}{7} y = 67\)

Để cộng trừ các phân số này, chúng ta cần tìm mẫu số chung. Mẫu số chung của 2 và 7 là 14.
\(\frac{9 \times 7}{2 \times 7} y + \frac{1 \times 14}{1 \times 14} y - \frac{5 \times 2}{7 \times 2} y = 67\)
\(\frac{63}{14} y + \frac{14}{14} y - \frac{10}{14} y = 67\)

Bây giờ, cộng trừ các phân số có cùng mẫu số:
\(\frac{63 + 14 - 10}{14} y = 67\)
\(\frac{67}{14} y = 67\)

Để tìm \(y\), ta chia cả hai vế cho \(\frac{67}{14}\):
\(y = 67 \div \frac{67}{14}\)
\(y = 67 \times \frac{14}{67}\)
\(y = 14\)

Bây giờ chúng ta đã tìm được \(y = 14\). Ta sẽ tìm \(x\)\(z\) dựa vào \(y\).
\(x = \frac{3}{2} y = \frac{3}{2} \times 14 = 3 \times 7 = 21\)
\(z = \frac{5}{7} y = \frac{5}{7} \times 14 = 5 \times 2 = 10\)

Vậy, ba số cần tìm là \(x = 21 , y = 14 , z = 10\).

17 giờ trước (10:21)

Vì 2x=3y nên 10x=15y

Vì 5y=7z nên 15y=21z

Suy ra 10x=15y=21z

Suy ra 10x/210=15y/210=21z/210

Suy ra x/21=y/14=z/10

Suy ra 3x/63=y/14=z/10

Suy ra 3x/63=y/14=z/10=3x-y+z/63-14+10=67/67=1 ( tính chất dãy tỉ số bằng nhau)

Suy ra +)3x/63=1 suy ra x=21

+) y/14=1 suy ra y=14

+)z/10=1 suy ra z=10

15 tháng 4 2017

{ x + 5y = 21 (1) 
{ 2x + 3z = 51 (2) 

. Ta có : (1) <=> x = 21 - 5y 

mà y ≥ 0 --> 21 - 5y ≤ 21 --> x ≤ 21 

. (2) <=> 3z = 51 - 2z ≥ 51 - 2.42 = 9 ( do x ≤ 21 --> -2x ≥ - 42) 

--> 3z ≥ 9 <=> z ≥ 3 

- nhân 2 vế của (2) với 2 rồi cộng với (1) ta có 

5x + 5y + 6z = 123 

<=> 5x + 5y + 5z = 123 - z 

<=> 5M = 123 - z 

. theo trên ta có z ≥ 3 --> 123 - z ≤ 123 - 3 = 120 

--> 5M ≤ 120 <=> M ≤ 24 

Dấu " = " xảy ra <=> x = 21 ; y = 0 ; z = 3 

12 tháng 8 2017

 Câu trả lời hay nhất: 

 xy+3x-7y=21 
<=> x(y+3) -7y

= 21 
<=> x(y+3)

= 21+7y 
<=> x(y+3)

= 7(y+3) 
<=> (x-7)(y+3)=0 

Suy ra nghiệm

của ptr là 
x=7, y tùy

ý thuộc Z 
x tùy ý

thuộc Z,

y=-3.

Đáp số :..........