
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đối với dạng bài này thì thường ta sẽ phải tách hạng tử hoặc cũng có thể dùng hệ số bất định:
Mik chỉ giải phương p tách cho dễ hiểu ,còn phương p kia bạn tự tìm hiểu nhé
Ta có: x^4 - 8x + 63
= (x^2)^2 -(16x^2 + 16x^2)+(64-1) -8x
=(x^2)^2 +16x^2+64 -16x^2-8x-1
=((x^2)^2 + 2.8.x^2+ 8^2) - ((4x)^2 + 2. 4x.1+1)
= (x^2+8)^2 - (4x+1)^2
= (x^2+8-4x-1)(x^2+8+4x+1)
=(x^2-4x+7)(x^2+4x+9)
Phương pháp kia thì mạnh hơn nhưng hơi khó hiểu

Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)
+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)
+) x2 + x = - 4
<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4
Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x
=> x2 + x + 4 = 0 ktm
Vậy pt = 0 <=> x = 1

(x³ - 4x² - 3x² + 12x + 2x - 8 =0
x²(x - 4) - 3x(x - 4) + 2(x - 4) =0
(x - 4)(x² - 3x + 2) =0
(x - 4)(x - 1)(x - 2) =0
=>X-4=0 hoặc x-1=0 hoặc x-2=0
(tự giải tiếp nhá)

\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)

\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+7x+13\right)=0\Rightarrow x=-2\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow x^3+9x^2+27x+27=1\)
\(\Leftrightarrow\left(x+3\right)^3=1^3\)
\(\Leftrightarrow x+3=1\Leftrightarrow x=-2\)
x2–4=0
=> x2=4
=>\(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
=>\(^{x^2-2^2=0}\)
(x+2)(x-2)=0
\(\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)