K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x^2=1,44

=>x=1,2 hoặc x=-1,2

b: =>648-9x=7x-490

=>-16x=-1138

=>x=569/8

c: =>x^2-1=0 và x-y+3=0

=>x^2=1 và x-y=-3

=>(x,y)=(1;4) hoặc (x,y)=(-1;2)

Bài 1: 

b: \(\dfrac{72-x}{7}=\dfrac{x-70}{9}\)

=>648-9x=7x-490

=>-16x=-1138

hay x=569/8

c: \(\Leftrightarrow x^2=\dfrac{36}{25}\)

hay \(x\in\left\{\dfrac{6}{5};-\dfrac{6}{5}\right\}\)

d: Đặt x/5=y/4=k

=>x=5k; y=4k

Ta có: xy=180

\(\Leftrightarrow20k^2=180\)

\(\Leftrightarrow k^2=9\)

Trường hợp 1: k=3

=>x=15; y=12

Trường hợp 2: k=-3

=>x=-15; y=-12

15 tháng 7 2015

a)\(\frac{72-x}{7}=\frac{x-70}{9}\)

<=>\(\frac{\left(72-x\right).9}{63}=\frac{\left(x-70\right).7}{63}\)

=>\(\frac{648-9x-7x+490}{63}=0\)

<=>.\(\frac{-16x+1138}{63}=0\)

<=>-16x+1138=0

<=>x=71,125

b)\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)

<=>\(\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)

<=>\(x^2+3x-x-3=x^2-4\)

<=>\(2x=-4+3\)

<=>\(2x=-1\)

<=>x=-0,5

a: \(\left|x+\frac{19}{55}\right|\ge0\forall x\)

\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\)

\(\left|z-2004\right|\ge0\forall z\)

Do đó: \(\left|x+\frac{19}{55}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac{19}{55}=0\\ y+\frac{1890}{1975}=0\\ z-2004=0\end{cases}\Rightarrow\begin{cases}x=-\frac{19}{55}\\ y=-\frac{1890}{1975}=-\frac{378}{395}\\ z=2004\end{cases}\)

b: Sửa đề: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

Ta có: \(\left|x+\frac92\right|\ge0\forall x\)

\(\left|y+\frac43\right|>=0\forall y\)

\(\left|z+\frac72\right|\ge0\forall z\)

Do đó: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\ge0\forall x,y,z\)

\(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

nên \(\begin{cases}x+\frac92=0\\ y+\frac43=0\\ z+\frac72=0\end{cases}\Rightarrow\begin{cases}x=-\frac92\\ y=-\frac43\\ z=-\frac72\end{cases}\)

c: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac15\right|\ge0\forall y\)

\(\left|x+y+z\right|\ge0\forall x,y,z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac15\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac15=0\\ x+y+z=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac15\\ z=-x-y=\frac34-\frac15=\frac{11}{20}\end{cases}\)

d: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac25\right|\ge0\forall y\)

\(\left|z+\frac12\right|\ge0\forall z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac25\right|+\left|z+\frac12\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac25=0\\ z+\frac12=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac25\\ z=-\frac12\end{cases}\)

30 tháng 3 2021

a)   25 - y2= 8.(x -2009)2

Do 8.(x-2009)2​​​ không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25

TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)

TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)

TH3: y = +-2  thay vào phương trình thì x không thuộc Z loại

chỉ thử đến y=+- 5 để thỏa mãn ynhỏ hơn hoặc bằng 25

 Cuối cùng ta được y = +- 5 và x = 2009

b, x3.y=x.y3+1997x3.y=x.y3+1997

⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997

Ta có: -1997 là số nguyên tố

-xy(x+y)(x-y) là hợp số

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11