
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)
\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{3}\)
\(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)
\(\dfrac{1}{4}\) \(x\)= \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)
\(\dfrac{1}{4}x=\dfrac{11}{24}\)
\(x=\dfrac{11}{24}:\dfrac{1}{4}\)
\(x=\dfrac{11}{24}\times4\)
\(x=\dfrac{11}{6}\)
b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)
\(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)
\(x\) = \(\dfrac{9}{10}\)

Bài 1
\(a,\)6 giờ 45 phút : 5 = 1 giờ 21 phút
\(b,\)12 giờ 36 phút : 12 = 1 giờ 3 phút
\(c,\)17,64 - ( 5 - 6,36 ) = 19
\(d,\)53,68 x 15,6 - 53,68 x 5,6 = 53,68( 15,6 - 5,6 ) = 536 , 8
Bài 2 :
\(b,\)\(x\times0,1=\frac{2}{5}\)
\(\Rightarrow x=\frac{2}{5}\div0,1\)
\(\Rightarrow x=4\)

a)10+2(x+1)=20
2(x+1)=20-10
2(x+1)=10
(x+1)=10/2
x+1=5
x=5-1
x=4

a) x + 40*25 = 2000
x + 1000 = 2000
x = 2000 - 1000
x = 1000.
b) (x + 40)*25 = 2000
x + 40 = 2000 : 25
x + 40 = 80
x = 80 - 40
x = 40.
c) (x - 10)*5 = 100 - 20*4
(x - 10)*5 = 100 - 80
(x - 10)*5 = 20
x - 10 = 20 : 5
x - 10 = 4
x = 4 + 10
x = 14.
d) Các số hạng x + 2; x + 4; ... ; x + 1996 lập thành một dãy số cách đều với khoảng cách bằng 2.
Từ x + 2 đến x + 1996 có:
(1996 - 2) : 2 + 1 = 998 số hạng.
Tổng các số hạng ở vế trái là:
(x + 2) + (x + 4) + ... + (x + 1996) = (x + 1996 + x + 2)*998 : 2 = (2*x + 1998)*998 : 2
Vậy ta có:
(2*x + 1998)*998 : 2 = 998000
(2*x + 1998)*998 = 998000*2
2*x + 1998 = 998000*2 : 998
2*x + 1998 = 2000
2*x = 2000 - 1998
2*x = 2
x = 2 : 2
x = 1.
ủng hộ nha
Ta có: a) \(x+40.25=2000\)
\(\Rightarrow x+1000=2000\)
\(\Rightarrow x=2000-1000=1000\)
b) \(\left(x+40\right).25=2000\)
\(\Rightarrow x+40=2000:25=80\)
\(\Rightarrow x=80-40=40\)
c) \(\left(x-10\right).5=100-20.4\)
\(\Rightarrow\left(x-10\right).5=100-80\)
\(\Rightarrow\left(x-10\right).5=20\)
\(\Rightarrow x-10=20:5=4\)
\(\Rightarrow x=10+4=14\)
d) \(\left(x+2\right)+\left(x+4\right)+....+\left(x+1996\right)=998000\)
\(\Rightarrow\left(x+x+...+x\right)+\left(2+4+..+1996\right)=998000\)
\(\Rightarrow998x+997002=998000\)
\(\Rightarrow998x=998000-996002=998\)
\(\Rightarrow x=998:998=1\)
Ủng hộ nha m.n ^_^

a) x + 40*25 = 2000
x + 1000 = 2000
x = 2000 - 1000
x = 1000.
b) (x + 40)*25 = 2000
x + 40 = 2000 : 25
x + 40 = 80
x = 80 - 40
x = 40.
c) (x - 10)*5 = 100 - 20*4
(x - 10)*5 = 100 - 80
(x - 10)*5 = 20
x - 10 = 20 : 5
x - 10 = 4
x = 4 + 10
x = 14.
d) Các số hạng x + 2; x + 4; ... ; x + 1996 lập thành một dãy số cách đều với khoảng cách bằng 2.
Từ x + 2 đến x + 1996 có:
(1996 - 2) : 2 + 1 = 998 số hạng.
Tổng các số hạng ở vế trái là:
(x + 2) + (x + 4) + ... + (x + 1996) = (x + 1996 + x + 2)*998 : 2 = (2*x + 1998)*998 : 2
Vậy ta có:
(2*x + 1998)*998 : 2 = 998000
(2*x + 1998)*998 = 998000*2
2*x + 1998 = 998000*2 : 998
2*x + 1998 = 2000
2*x = 2000 - 1998
2*x = 2
x = 2 : 2
x = 1.
a) x + 40 x 25 = 2000
x + 1000 = 2000
x = 2000 - 1000
x = 1000
b) (\(x\) + 40) x 25 = 2000
x + 40 = 2000 : 25
x + 40 = 80
x = 80 - 40
x = 40
c) (x - 10) x 5 = 100 - 20 x 4
(x - 10) x 5 = 100 - 80
(x - 10) x 5 = 20
x - 10 = 20 : 5
x - 10 = 4
x = 4 + 10
x = 14.
d) Các số hạng x + 2; x + 4; ... ; x + 1996 lập thành một dãy số cách đều với khoảng cách bằng 2.
Từ \(x\) + 2 đến \(x\) + 1996 có:
(1996 - 2) : 2 + 1 = 998 số hạng.
Tổng các số hạng ở vế trái là:
(\(x\) + 2) + (\(x\) + 4) + ... + (\(x\) + 1996) = (\(x\) + 1996 + \(x\) + 2) x 998 : 2 = (2 x \(x\) + 1998) x 998 : 2
Vậy ta có:
(2 x \(x\) + 1998) x 998 : 2 = 998000
(2 x \(x\) + 1998) x 998 = 998000x 2
2 x \(x\) + 1998 = 998000 x 2 : 998
2 x \(x\) + 1998 = 2000
2 x \(x\) = 2000 - 1998
2 x \(x\) = 2
\(x\) = 2 : 2
x = 1

a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)

a) \(...\Rightarrow x.\left(2+5\right)=14\Rightarrow x.7=14\Rightarrow x=14:7=2\)
b) \(...\Rightarrow x.\left(9+1\right)=20\Rightarrow x.10=20\Rightarrow x=20:10=2\)
c) \(...\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=1999\Rightarrow x.\dfrac{3}{3}=1999\Rightarrow x=1999\)
d) \(...\Rightarrow11.x+22=5.x+40\Rightarrow11.x-5.x=40-22\Rightarrow6.x=18\Rightarrow x=18:6=3\)
e) \(...\Rightarrow11.x-66=4.x+11\Rightarrow11.x-4.x=11+66\Rightarrow7.x=77\Rightarrow x=77:7=11\)
f) \(...\Rightarrow\left(3.x-12\right):x=12-10\)
\(\Rightarrow3.x-12=2.x\)
\(\Rightarrow3.x-2.x=12\)
\(\Rightarrow x=12\)
g) \(...\Rightarrow\left(5.x+7\right):x=26-20\)
\(\Rightarrow5.x+7=6.x\)
\(\Rightarrow6.x-5.x=7\)
\(\Rightarrow x=7\)
h) \(...\Rightarrow x.\left(1999-1\right)=1999.\left(1997+1\right)\)
\(\Rightarrow x.1998=1999.1998\)
\(\Rightarrow x=1999.1998:1998\)
\(\Rightarrow x=1999\)
a, \(x\times\) 2 + \(x\times\) 5 = 14
\(x\) \(\times\) ( 2 + 5) = 14
\(x\) \(\times\) 7 = 14
\(x\) = 14: 7
\(x\) = 2
b, \(x\times9\) + \(x\)= 20
\(x\) \(\times\)( 9 + 1) = 20
\(x\) \(\times\) 10 = 20
\(x\) = 2
c, \(x\) : \(\dfrac{3}{2}\) + \(x\times\dfrac{1}{3}\) = 1999
\(x\times\) \(\dfrac{2}{3}\) + \(x\) \(\times\dfrac{1}{3}\) = 1999
\(x\times\) ( \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) = 1999
\(x\) = 1999
d, 11\(\times\)(\(x+2\)) = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) + 22 = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 40 - 22
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 18
11 \(\times\) \(x\) - 5 \(\times\) \(x\) = 18
\(x\) \(\times\) ( 11 - 5) = 18
\(x\) \(\times\) 6 = 18
\(x\) = 3
3/5 X + 2X + 40 = 53
13/5 X = 53 - 40
13/5 X = 13
X = 13 : 13/5
X = 5
\(\frac{3}{5}x+2x+40=53\)\(\Leftrightarrow\frac{13}{5}x+40=53\)\(\Leftrightarrow\frac{13}{5}x=53-40\)\(\Leftrightarrow\frac{13}{5}x=13\)\(\text{Mẫu chung:5}\)\(\Leftrightarrow13.5x=13.5\)\(65x=65\)\(\Rightarrow x=1\)