Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }


Để cho gọn, đặt {x2=ay2=b
(a+4b+28)2−17a2−17b2=238b+833
\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833
\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0
\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0
\(\Leftrightarrow\)(2x−y)(2x+y)=7
Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương
\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3
Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)
#Shinobu Cừu

2/ a/ \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)
Làm tiếp nhé
b/ \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)
\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)
Làm tiếp nhé
1/ \(x^2+x+19=z^2\)
\(\Leftrightarrow4x^2+4x+76=4z^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)
\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)
Tới đây đơn giản rồi làm tiếp đi nhé


Ta thấy nếu một trong hai số \(x,y\) bằng 0 thì số kia cũng bằng 0. Do đó \(x=y=0\) là một nghiệm của pt đã cho.
Xét \(x,y\ne0\) . Gọi \(\operatorname{gcd}\left(x,y\right)=d\), khi đó \(\begin{cases}x=da\\ y=db\end{cases}\) với \(\operatorname{gcd}\left(a,b\right)=1\) và \(d,a,b\ne0\). Khi đó pt đã cho thành:
\(\left(da\right)^2\left(da+db\right)=\left(db\right)^2\left(da-db\right)^2\)
\(\lrArr a^2\left(a+b\right)=db^2\left(a-b\right)^2\) (1)
Vì \(\operatorname{gcd}\left(a,b\right)=1\) nên \(\operatorname{gcd}\left(b,a+b\right)=\operatorname{gcd}\left(a,a-b\right)=1\) (thuật toán Euclid).
Từ (1) suy ra \(a^2\vert db^2\left(a-b\right)^2\), nhưng vì \(\operatorname{gcd}\left(a,b\right)=\operatorname{gcd}\left(a,a-b\right)=1\) nên \(a^2\vert d\). Đặt \(d=ka^2\) thì (1) thành
\(a+b=kb^2\left(a-b\right)^2\) (2)
Từ (2) suy ra \(b^2\left(a-b\right)^2\vert a+b\), suy ra \(\begin{cases}b^2\vert a+b\\ \left(a-b\right)^2\vert a+b\end{cases}\)
Ta có \(b^2\vert a+b\) thì \(b\vert a+b\) thì \(b\vert a\), nhưng do \(\operatorname{gcd}\left(a,b\right)=1\) nên \(b=\pm1\)
Tương tự, suy ra \(a-b=\pm1\)
Ta lập bảng sau:
b | 1 | -1 | 1 | -1 |
a-b | 1 | -1 | -1 | 1 |
a | 2 | -2 | 0 (loại) | 0 (loại) |
Nếu \(\left(a,b\right)=\left(2,1\right)\) thì \(k=3\), suy ra \(d=12\), dẫn đến \(\left(x,y\right)=\left(24,12\right)\), thử lại thỏa mãn.
Nếu \(\left(a,b\right)=\left(-2,-1\right)\) thì \(k=-3\), suy ra \(d=-12\), cũng dẫn đến \(\left(x,y\right)=\left(24,12\right)\).
Vậy có hai cặp số \(\left(a,b\right)\) thỏa mãn yêu cầu bài toán là \(\left(0,0\right)\) và \(\left(24,12\right)\).
@Lê Song Phương mình cảm ơn bạn, nhưng mình thấy là \(\left(24;12\right)\) cũng là một nghiệm ạ. Bạn có thể tìm cách khác không ạ?
(Lời giải có thể hơi khó hiểu một chút)
Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)
Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)
\(2^1=2\left(mod5\right)\), \(2^2=4\left(mod5\right)\), \(2^3=3\left(mod5\right)\), \(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.
Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.
Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.
Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)
-----
Ta chuyển sang xét modulo 3.
Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.
(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).
------
Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).
Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).
Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).
Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.
Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).
-----
Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).
Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.
Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.
Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).
Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.