K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).


(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).


Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).


(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).


👉 Vậy:

  • Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
  • Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
  • Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
  • Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
    cho mik xin tick nha. Cảm ơn cậu !


9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6 

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

6 tháng 8 2015

a ) Theo bài ra ta có ;

 a+ b = a.b = a : b 

Với a . b = a : b => a .b. b = a => b^2 = a : a= > b^2 = 1 => b = 1 hoặc -1

(+) b = 1 => a. 1 = a + 1 => a = a+ 1 => 0a = 1 ( laoij )

(+) b = -1 => a.-1 = a + (-1) => -a = a- 1 => -2a = -1 => a= -1/2

VẬy b= -1 và a  = 1/2 

B) tương tự 

20 tháng 3 2016

dấu nhân ak