Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{\left(x^3+y^3\right)-\left(x^3-2y^3\right)}{2}=\frac{3y^3}{2}\)
Từ\(\frac{x^3+y^3}{6}=\frac{3y^3}{2}\Rightarrow2x^3+2y^3=18y^3\Rightarrow2x^3=16y^3\Rightarrow x^3=8y^3=2^3y^3=\left(2y\right)^3\Rightarrow x=2y\)
Thế \(x=2y\)vào \(\left|xy\right|=\left|2y\cdot y\right|=2\Rightarrow\left|2y^2\right|=2\Rightarrow2y^2=2\)(vì \(2y^2\ge0\))\(\Rightarrow y^2=1\)
\(\Rightarrow y=\pm1\Rightarrow x=\pm2\)
có nghĩ là có 4 đáp số nhé bạn y=1;x=2
y=1;x=-2
y=-1;x=2
y=-1;x=-2

ta có x+4y=3(1)
lại có −xcăn3=(y−2) căn3⇒−x=y−2⇒x=2−y(2)
thế 2 vào 1
(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3
x=2−1/3=5/3
Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)
\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)
\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)
\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)
có \((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)
\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)
dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)