K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

13 tháng 9

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).


(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).


Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).


(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).


👉 Vậy:

  • Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
  • Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
  • Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
  • Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
    cho mik xin tick nha. Cảm ơn cậu !


Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=>x=2k; y=3k

\(xy^2=144\)

=>\(2k\cdot\left(3k\right)^2=144\)

=>\(2k\cdot9k^2=144\)

=>\(18k^3=144\)

=>\(k^3=8=2^3\)

=>k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\end{cases}\)

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{\left(x^3+y^3\right)-\left(x^3-2y^3\right)}{2}=\frac{3y^3}{2}\)

Từ\(\frac{x^3+y^3}{6}=\frac{3y^3}{2}\Rightarrow2x^3+2y^3=18y^3\Rightarrow2x^3=16y^3\Rightarrow x^3=8y^3=2^3y^3=\left(2y\right)^3\Rightarrow x=2y\)

Thế \(x=2y\)vào \(\left|xy\right|=\left|2y\cdot y\right|=2\Rightarrow\left|2y^2\right|=2\Rightarrow2y^2=2\)(vì \(2y^2\ge0\))\(\Rightarrow y^2=1\)

\(\Rightarrow y=\pm1\Rightarrow x=\pm2\)

có nghĩ là có 4 đáp số nhé bạn y=1;x=2

                                                 y=1;x=-2

                                                 y=-1;x=2

                                                 y=-1;x=-2

16 tháng 8

ta có x+4y=3(1)

lại có −xcăn3​=(y−2) căn3​⇒−x=y−2⇒x=2−y(2)

thế 2 vào 1

(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3

x=2−1/3​=5/3

Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)