Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111


\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)
\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)
\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)
có \((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)
\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)
dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)


Bài 1 :
\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)
TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)
TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)
Vậy biểu thức ko có x thỏa mãn
Bài 2 :
\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2
TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)
TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)

Taco:x^2+3*-2=0
x^2+-6=0
x^2 =0-(-6)=6
=>không tồn tại x