tìm tất cả các số thực x thỏa mãn |x+2023| ||+ | 3x + 2024| + | 29x + 2025| = 3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

3 tháng 1 2021

số cuối là 1 ko phải 11 nhá mn

Đề hình như hơi sai sai \(\left|x+2017\right|^{20}\)hay \(\left(x+2017\right)^{20}\)hay \(\left|x+2017\right|\)

Theo mk đề là: \(\left|x+2017\right|+\left|x+2018\right|=1\)

\(\left|x+2017\right|+\left|-x-2018\right|=1\)

+)Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)nên

\(\left|x+2017\right|+\left|-x-2018\right|\ge\left|x+2017-x-2018\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge\left|-1\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge1\)

+)Dấu "=" xảy ra khi

\(\left(x+2017\right).\left(-x-2018\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+2017\ge0\\-x-2018\ge0\end{cases}hoac\hept{\begin{cases}x+2017< 0\\-x-2018< 0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\-x\ge2018\end{cases}hoac\hept{\begin{cases}x< -2017\\-x< 2018\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\x\le-2018\end{cases}hoac\hept{\begin{cases}x< -2017\\x>-2018\end{cases}}}\)

Vậy \(-2018< x< -2017\)(tm)

Chúc bạn học tốt

15 tháng 8 2021

3x + /2x 

3x ;luôn là số nguyên 

Vậy để thỏa đề thì 2/x phải là số nguyên 

=> 2 chia hết cho x 

x thuộc ước của 2 

mà x > 0 

Vậy x = 1 hoặc x = 2 

2/x là số nguyên thì xƯ(2)=(−2;−1;1;2)x∈Ư(2)=(−2;−1;1;2)

Mà x > 0 ⇒x=(1;2)

nha bạn chúc bạn học tốt nha 

16 tháng 8

ta có x+4y=3(1)

lại có −xcăn3​=(y−2) căn3​⇒−x=y−2⇒x=2−y(2)

thế 2 vào 1

(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3

x=2−1/3​=5/3

Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)