
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tham khảo:\(\)
Bước 1: Hoàn thành bình phương
Ta nhóm và hoàn thành bình phương để nhìn rõ cấu trúc.
Với A:
\(x^{2} + 2 x + 2 y^{2} - 4 y + 5\)
- Hoàn thành bình phương cho \(x\):
\(x^{2} + 2 x = \left(\right. x + 1 \left.\right)^{2} - 1\)
- Với \(2 y^{2} - 4 y\):
\(2 \left(\right. y^{2} - 2 y \left.\right) = 2 \left[\right. \left(\right. y - 1 \left.\right)^{2} - 1 \left]\right. = 2 \left(\right. y - 1 \left.\right)^{2} - 2\)
- Thay lại:
\(A = \left(\right. x + 1 \left.\right)^{2} - 1 + 2 \left(\right. y - 1 \left.\right)^{2} - 2 + 5\) \(A = \left(\right. x + 1 \left.\right)^{2} + 2 \left(\right. y - 1 \left.\right)^{2} + 2\)
Với B:
\(2 x^{2} + 4 x + y^{2} - 8 y + 10\)
- Với \(2 x^{2} + 4 x\):
\(2 \left(\right. x^{2} + 2 x \left.\right) = 2 \left[\right. \left(\right. x + 1 \left.\right)^{2} - 1 \left]\right. = 2 \left(\right. x + 1 \left.\right)^{2} - 2\)
- Với \(y^{2} - 8 y\):
\(y^{2} - 8 y = \left(\right. y - 4 \left.\right)^{2} - 16\)
- Thay lại:
\(B = 2 \left(\right. x + 1 \left.\right)^{2} - 2 + \left(\right. y - 4 \left.\right)^{2} - 16 + 10\) \(B = 2 \left(\right. x + 1 \left.\right)^{2} + \left(\right. y - 4 \left.\right)^{2} - 8\)
Bước 2: Đặt biến mới
Đặt:
\(u = x + 1 , v = y - 1\)
Khi đó:
- \(y - 4 = v - 3\)
Biểu thức trở thành:
\(A = u^{2} + 2 v^{2} + 2\) \(B = 2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8\)
Bước 3: Giả sử chúng là số chính phương
Giả sử:
\(A = p^{2} , B = q^{2}\)
với \(p , q\) nguyên không âm.
Hệ:
\(u^{2} + 2 v^{2} + 2 = p^{2} \left(\right. 1 \left.\right)\) \(2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8 = q^{2} \left(\right. 2 \left.\right)\)
Bước 4: Loại trừ
Từ (1) nhân 2:
\(2 u^{2} + 4 v^{2} + 4 = 2 p^{2}\)
So sánh với (2):
\(\left(\right. 2 u^{2} + 4 v^{2} + 4 \left.\right) - \left[\right. 2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8 \left]\right. = 2 p^{2} - q^{2}\)
Rút gọn vế trái:
\(4 v^{2} + 4 - \left(\right. v^{2} - 6 v + 9 \left.\right) + 8 = 3 v^{2} + 6 v + 3\)
Vậy:
\(3 v^{2} + 6 v + 3 = 2 p^{2} - q^{2}\)
Nhận thấy:
\(3 v^{2} + 6 v + 3 = 3 \left(\right. v + 1 \left.\right)^{2}\)
Do đó:
\(3 \left(\right. v + 1 \left.\right)^{2} = 2 p^{2} - q^{2} \left(\right. 3 \left.\right)\)
Bước 5: Tìm nghiệm
(1) ⇒ \(u^{2} = p^{2} - 2 v^{2} - 2\) phải nguyên không âm.
(2) ⇒ \(u^{2} = \frac{q^{2} - \left(\right. v - 3 \left.\right)^{2} + 8}{2}\) cũng phải nguyên không âm.
Ta có thể thử giá trị nhỏ của \(v\) để xem có nghiệm nguyên không.
- v = -1:
Từ (3): \(0 = 2 p^{2} - q^{2}\) ⇒ \(q^{2} = 2 p^{2}\) ⇒ không có nghiệm nguyên trừ \(p = q = 0\) nhưng khi đó (1) ⇒ \(u^{2} + 2 + 2 = 0\) vô lý. - v = 0:
(3): \(3 = 2 p^{2} - q^{2}\). Thử p nhỏ thấy không khớp với (1),(2) cùng lúc. - Thử vài \(v\) khác, đều ra mâu thuẫn hoặc \(u^{2}\) âm.
Sau khi kiểm tra các giá trị \(v\) hợp lý, không xuất hiện cặp \(\left(\right. u , v \left.\right)\) nguyên nào thoả mãn đồng thời.
✅ Kết luận:
Không tồn tại số nguyên \(x , y\) để cả hai biểu thức đều là số chính phương.

1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...


+ \(\left(1\right)\Leftrightarrow x^3+1+2\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow x^3+1+2\left(y-1\right)^2=0\)
Với \(\forall y\in R\Rightarrow\left(y-1\right)^2\ge0\Rightarrow x^3+1\le0\)
\(\Rightarrow x^3\le-1\Leftrightarrow x\le-1\)(*)
+ \(\left(2\right)\Leftrightarrow x^2y^2-2y+x^2=0\)
Có \(\Delta'_y=1-x^4\) \(\ge0\) thì \(\left(2\right)\) có nghiệm
\(\Leftrightarrow x^4\le1\Leftrightarrow-1\le x\le1\)(**)
Từ (*) và (**) => \(x=-1\Rightarrow\) Thay vào (1) \(\Rightarrow y=1\)
Vậy \(B=x^2+y^2=\left(-1\right)^2+1^2=2\)


Theo đề bài:
\(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)
Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)
Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)
Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)
<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)
Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)
<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5)
Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y
=> \(M=9x^4+7x^4-12x^2+4x^2+5\)
\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)
Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)
Với x = 1/2 => (x; y) = ( 1/2; -1/2)
Với x = -1/2 => ( x; y ) = ( -1/2; 1/2)
Vậy min M = 4 đạt tại ....

\(x^5+y^2=xy^2+1\)
\(\Rightarrow x^5+y^2-xy^2-1=0\)
\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)
\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)