K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(x=\frac{a}{b};a,b>0;\left(a,b\right)=1\).

\(\frac{5}{x}=\frac{5b}{a}\inℤ\Rightarrow a\inƯ\left(5\right)=\left\{1,5\right\}\).(vì \(\left(a,b\right)=1\))

Với \(a=1\):

\(2x=\frac{2}{b}\inℤ\Rightarrow b\inƯ\left(2\right)=\left\{1,2\right\}\)

Thử lại \(x=1,x=\frac{1}{2}\)đều thỏa mãn. 

Với \(a=5\):

\(2x=\frac{10}{b}\Rightarrow b\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)

\(\left(a,b\right)=1\)nên \(b\in\left\{1,2\right\}\).

Thử lại \(x=5,x=\frac{5}{2}\)đều thỏa mãn. 

Vậy \(x\in\left\{1,\frac{1}{2},5,\frac{5}{2}\right\}\).

15 tháng 8 2021

2x và 5/x 

2x luôn là số nguyên 

Vậy để thỏa đề thì 5/x phải là số nguyên 

=> 5 chia hết cho x 

x thuộc ước của 5 

mà x > 0 

Vậy x = 1 hoặc x = 5 

\(\frac{2}{x}\)là số nguyên thì \(x\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)

Mà x > 0 \(\Rightarrow x=\left(1;2\right)\)

5 tháng 7 2019

\(\frac{2}{x}\)là số nguyên \(\Leftrightarrow x\inƯ\left(2\right)=\left\{-2;-2;1;2\right\}\)

Mà \(x>0\Rightarrow x\in\left\{1;2\right\}\)

Rất vui vì giúp đc bạn <3

NM
15 tháng 8 2021

Vì x là số dương nên ta Giả sử \(\hept{\begin{cases}x^2=a\\\frac{2}{x}=b\end{cases}}\) với a,b là hai số tự nhiên

Vậy \(x=\frac{2}{b}\Rightarrow x^2=\frac{4}{b^2}=a\Leftrightarrow4=ab^2\)

Do b là số tự nhiên nên \(\orbr{\begin{cases}b=1\Rightarrow a=4\\b=2\Rightarrow a=1\end{cases}}\) vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

15 tháng 8 2021

3x + /2x 

3x ;luôn là số nguyên 

Vậy để thỏa đề thì 2/x phải là số nguyên 

=> 2 chia hết cho x 

x thuộc ước của 2 

mà x > 0 

Vậy x = 1 hoặc x = 2 

2/x là số nguyên thì xƯ(2)=(−2;−1;1;2)x∈Ư(2)=(−2;−1;1;2)

Mà x > 0 ⇒x=(1;2)

nha bạn chúc bạn học tốt nha 

31 tháng 8 2021

Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)

Mà x>0 nên \(x\in\left\{1,2\right\}\)

 

31 tháng 8 2021

Bạn ơi đây là số hữu tỉ chứ ko phair là số nguyên

 

13 tháng 9

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).


(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).


Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).


(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).


👉 Vậy:

  • Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
  • Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
  • Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
  • Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
    cho mik xin tick nha. Cảm ơn cậu !


16 tháng 8

ta có x+4y=3(1)

lại có −xcăn3​=(y−2) căn3​⇒−x=y−2⇒x=2−y(2)

thế 2 vào 1

(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3

x=2−1/3​=5/3

Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)

DD
11 tháng 8 2021

Với \(x=0\)hiển nhiên đúng. Với \(x\ne0\):

Đặt \(x=\frac{a}{b};\left(\left|a\right|,\left|b\right|\right)=1\).

\(x^2+2x=\frac{a^2}{b^2}+\frac{2a}{b}=\frac{a^2+2ab}{b^2}=\frac{a\left(a+2b\right)}{b^2}\)

mà \(\left(a,b\right)=1\Rightarrow a+2b⋮b^2\Rightarrow a=kb^2-2b,k\inℤ\)

khi đó \(a⋮b\).

Suy ra \(x\)là một số nguyên.