Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

\(x^2+y^2-xy-x-y< \frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y< 1\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2< 3\)
Đến đây dễ rồi
Cách lớp 8 nhé!

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{\left(x^3+y^3\right)-\left(x^3-2y^3\right)}{2}=\frac{3y^3}{2}\)
Từ\(\frac{x^3+y^3}{6}=\frac{3y^3}{2}\Rightarrow2x^3+2y^3=18y^3\Rightarrow2x^3=16y^3\Rightarrow x^3=8y^3=2^3y^3=\left(2y\right)^3\Rightarrow x=2y\)
Thế \(x=2y\)vào \(\left|xy\right|=\left|2y\cdot y\right|=2\Rightarrow\left|2y^2\right|=2\Rightarrow2y^2=2\)(vì \(2y^2\ge0\))\(\Rightarrow y^2=1\)
\(\Rightarrow y=\pm1\Rightarrow x=\pm2\)
có nghĩ là có 4 đáp số nhé bạn y=1;x=2
y=1;x=-2
y=-1;x=2
y=-1;x=-2

\(x+4y-x\sqrt3=\left(y-2\right)\sqrt3+3\)
=>\(\begin{cases}-x=y-2\\ x+4y=3\end{cases}\Rightarrow\begin{cases}x=-y+2\\ -y+2+4y=3\end{cases}\)
=>\(\begin{cases}x=-y+2\\ 3y=1\end{cases}\Rightarrow\begin{cases}y=\frac13\\ x=-\frac13+2=2-\frac13=\frac53\end{cases}\)