Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477

Bài 14: Gọi số cần tìm là x
x chia 5 dư 3
=>x-3⋮5
=>x-3+5⋮5
=>x+2⋮5(1)
x chia 7 dư 5
=>x-5⋮7
=>x-5+7⋮7
=>x+2⋮7(2)
Từ (1),(2) suy ra x+2∈BC(5;7)
mà x nhỏ nhất
nên x+2=BCNN(5;7)
=>x+2=35
=>x=33
Vậy: Số cần tìm là 33
Bài 13: Gọi số cần tìm có dạng là \(\overline{ab}\)
Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 3, dư là 5
=>\(\overline{ab}=3\cdot\left(a+b\right)+5\)
=>10a+b=3a+3b+5
=>7a-2b=5
=>(a;b)∈{(1;1);(3;8)}
Thử lại, ta thấy a=3;b=8 thỏa mãn
vậy: Số cần tìm là 38