Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=x^2y^4+2x^3y^3\)
Để A chia hết cho \(B=x^ny^3\) thì:
\(\left\{{}\begin{matrix}2x^3y^3⋮x^ny^3\\x^2y^4⋮x^ny^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^3⋮x^n\\x^2⋮x^n\end{matrix}\right.\)
\(\Rightarrow x^0\le x^n\le x^2\)
\(\Rightarrow0\le n\le2\)

a: \(\frac{A}{B}=\frac{x^2y^4+2x^3y^{n}}{x^{n}y^2}=x^{2-n}\cdot y^2+2\cdot x^{3-n}\cdot y^{n-2}\)
Để A chia hết cho B thì \(\begin{cases}2-n\ge0\\ 3-n\ge0\\ n-2\ge0\end{cases}\Rightarrow\begin{cases}n\le2\\ n\le3\\ n\ge2\end{cases}\Rightarrow\begin{cases}n\le2\\ n\ge2\end{cases}\)
=>n=2
b: \(\frac{A}{B}=\frac{5x^8y^4-9x^{2n}y^6}{-x^7y^{n}}=-5xy^{4-n}+9x^{2n-7}y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}4-n\ge0\\ 2n-7\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\le4\\ n\ge\frac72\\ n\le6\end{cases}\Rightarrow\frac72\le n\le4\)
mà n là số tự nhiên
nên n=4
c: \(\frac{A}{B}=\frac{12x^8y^{2n}+25x^{12}y^5z^2}{4x^{3n}y^4}=3x^{8-3n}y^{2n-4}+\frac{25}{4}x^{12-3n}yz^2\)
Để A chia hết cho B thì \(\begin{cases}8-3n\ge0\\ 2n-4\ge0\\ 12-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le8\\ n\ge2\\ 3n\le12\end{cases}\)
=>\(2\le n\le\frac83\)
mà n là số tự nhiên
nên n=2
d: \(\frac{A}{B}=\frac{-13x^{17}y^{2n-3}+22x^{16}y^7}{-7x^{3n+1}y^6}=\frac{13}{7}x^{17-3n-1}y^{2n-3-6}-\frac{22}{7}x^{16-3n-1}y\)
\(=\frac{13}{7}\cdot x^{16-3n}y^{2n-9}-\frac{22}{7}x^{15-3n}y\)
Để A chia hết cho B thì \(\begin{cases}16-3n\ge0\\ 2n-9\ge0\\ 15-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le16\\ 2n\ge9\\ 3n\le15\end{cases}=>\begin{cases}n<=\frac{16}{3}\\ n\ge\frac92\\ n\le5\end{cases}\)
=>\(\frac92\le n\le5\)
mà n là số tự nhiên
nên n=5
e: \(\frac{A}{B}=\frac{20x^5y^{2n}-10x^4y^{3n}+15x^5y^6}{3x^2y^{n+1}}\)
\(=\frac{20}{3}\cdot x^{5-2}\cdot y^{2n-n-1}-\frac{10}{3}\cdot x^{4-2}\cdot y^{3n-n-1}+5x^3y^{6-n-1}\)
\(=\frac{20}{3}\cdot x^3\cdot y^{n-1}-\frac{10}{3}x^2y^{2n-1}+5x^3y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}n-1\ge0\\ 2n-1\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\ge1\\ n\ge\frac12\\ n\le6\end{cases}\Rightarrow1\le n\le6\)
mà n là số tự nhiên
nên n∈{1;2;3;4;5;6}

Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)

Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại

Câu 1:
a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)
\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)
\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)
b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)
1) a) (x2 + y2 - 36)2 - 4x2y2
= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)
= [(x - y)2 - 36][(x + y)2 - 36]
= (x - y - 6)(x - y + 6)(x + y + 6)(x + y - 6)
b) (x2 + x)2 - 5(x2 + x) + 6
= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6
= (x2 + x)(x2 + x - 2) - 3(x2 + x - 2)
= (x2 + x - 3)(x2 + 2x - x - 2)
= (x2 + x - 3)(x - 1)(x + 2)
2) Đặt tính là đc

Câu 2:
a: \(n^2-2n+5⋮n-1\)
\(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(4x^2-6x-16⋮x-3\)
\(\Leftrightarrow4x^2-12x+6x-18+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{4;2;5;1\right\}\)
Câu 3:
a: \(\left(3x-8\right)\left(7x+10\right)-\left(2x-15\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(7x+10-2x+15\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(5x+25\right)=0\)
=>x=8/3 hoặc x=-5
b: \(\dfrac{\left(x^4-2x^2-8\right)}{x-2}=0\)(ĐKXĐ: x<>2)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
=>x+2=0
hay x=-2