Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301

Gọi số phải tìm là a ( \(100\le a\le999\)
a chia 12 dư 8 nên \(a-8⋮12\Rightarrow a+36-8⋮12\Rightarrow a+28⋮12\)
a chia 20 thiếu 8 nên\(a+8⋮20\Rightarrow a+20+8⋮20\Rightarrow a+28⋮20\)
\(\Rightarrow a+28\in BC\left(12,20\right)=B\left(60\right)=\left\{0;60;120;180....\right\}\)
vì a là số nhỏ nhất có 3 chữ số nên thử lần lượt các giá trị ta có: \(a+28=180\Rightarrow a=152\)

Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$

Gọi STN đó là a
Ta có: \(a-15\in BC\left(20;25;30\right)\)và a chia hết cho 41
=> \(a-15\in BC\left(300\right)\)
Mà a<1000 nên a-15<985
=> \(a-15\in\left\{0;300;600;900\right\}\)
Hay \(a\in\left\{15;315;615;915\right\}\)
Mà a chia hết cho 41 nên a=615
Vậy số tự nhiên đó là 615
tick nha !!!!!!!!!!!!!!!!!!
Gọi số ần tìm là a \(\hept{\begin{cases}a:48dư43&a:40&dư35\end{cases}}=>\hept{\begin{cases}a+5⋮48\\a+5⋮40\end{cases}}\)
=> a+5 \(\in\)BC(48,40)
Mà 48 = 243
40 = 235
BCNN (48,40) = 24.3.5= 16.3.5 = 240
lại có BC(40,48) = B(240) =\([0;240;240;720;960;1200;1440;...]\)
mà a + 5 có 4 chữ số bé hơn 1300 => a+5 = 1200
a = 1200 - 5
a = 1195